Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Debra A. Inglis x
Clear All Modify Search

Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, is a significant disease affecting watermelon (Citrullus lanatus) production in Washington State. This field study at three locations in Washington in 2015 compared verticillium wilt susceptibility, fruit yield and quality of nongrafted watermelon, and grafted plants grown with black plastic and clear plastic mulch. Overall for grafting treatments, area under disease progress curve (AUDPC) values were higher for nongrafted ‘TriX Palomar’ (765) than for ‘TriX Palomar’ grafted onto ‘Super Shintosa’ (132), ‘Tetsukabuto’ (178), or ‘Just’ (187). Overall for mulch, the AUDPC value was higher for plants grown with black plastic mulch (385) than for plants grown with clear plastic mulch (237). Overall for location, the AUDPC value was lowest at Eltopia (84), intermediate at Othello (182), and highest at Mount Vernon (680). At season end, more Verticillium microsclerotia were present in stems of nongrafted ‘TriX Palomar’ than in grafted treatment stems at Eltopia and Mount Vernon, but not at Othello. Differences in microsclerotia presence occurred only in the top or scion portion of the stem, but not in the graft union, rootstock, or crown portions of the stem. There was no difference due to mulch in regard to Verticillium microsclerotia detected in stem assays. After harvest, V. dahliae soil density under black plastic mulch increased 6-fold at Eltopia, 4.7-fold at Othello, and 1.9-fold at Mount Vernon. In contrast, V. dahiae soil density under clear plastic mulch was nearly identical to the level at planting at each location (<1, 2.6, and 27 cfu/g at Eltopia, Othello, and Mount Vernon, respectively). There was a significant interaction between grafting and location for fruit yield such that there was no difference at Eltopia and Othello, but at Mount Vernon, yield of nongrafted ‘TriX Palomar’ was lower (7.4 kg/plant) than for grafted plants (average 13.0 kg/plant). The number and weight of marketable fruit per plant were higher at Othello (4.0 and 27.65 kg/plant, respectively) than at Eltopia (2.0 and 12.23 kg/plant, respectively) and Mount Vernon (2.2 and 11.63 kg/plant, respectively). Fruit firmness was greater overall for all three grafted treatments (average 2.67 N) than for nongrafted ‘TriX Palomar’ (2.20 N), but there was no difference in total soluble solids (TSS) or lycopene content of fruit due to grafting. Yield, fruit firmness, and TSS did not differ due to mulch type; however, lycopene content was greater for plants grown with black plastic mulch than with clear plastic mulch at Eltopia. There was no difference in TSS due to location, but fruit firmness was lower at Eltopia and Othello (2.20 and 2.44 N, respectively) than at Mount Vernon (3.00 N), whereas lycopene content was less at Mount Vernon (27.85 μg·g−1) than at Eltopia or Othello (38.58 and 36.54 μg·g−1). The results of this study indicate that although verticillium wilt symptoms were visible in watermelon plants when V. dahliae level was <3 cfu/g of soil, watermelon yield was not reduced. However, when V. dahliae soil density was >50 cfu/g of soil, yield was greater for grafted plants and for plants grown with clear plastic mulch.

Free access

Three potentially biodegradable plastic mulch products, Mater-bi®-based black film (BioAgri), experimental polyhydroxyalkanoate film (Crown 1), and experimental spunbonded polylactic acid fabric (SB-PLA-11), were evaluated over two broccoli (Brassica oleracea var. italica) growing seasons to determine deterioration before and after soil incorporation. Pretillage mulch deterioration was evaluated in both growing seasons by rating the percent visual deterioration (PVD). Crown 1 had the greatest PVD throughout the study (P ≤ 0.05) and BioAgri also had significant pretillage deterioration. SB-PLA-11 showed no appreciable deterioration based on PVD (<1.3%) in either growing season. Postincorporation mulch deterioration was measured for 13 months after rototilling at the end of the first growing season. The average fragment area of all mulch products decreased over time after soil incorporation. The number of postincorporation mulch fragments initially increased for all mulch products, with Crown 1 and BioAgri reaching maximum fragment counts 132 and 299 days after incorporation, respectively. As the number of fragments declined, the average area of fragments did not change, suggesting that a threshold fragment size may exist at which biodegradation accelerates. At the end of the study period, 397 days after soil incorporation, Crown 1 and BioAgri had deteriorated 100% and 65%, respectively; whereas SB-PLA-11 showed very little deterioration.

Full access

Dry pea (Pisum sativum L.) production in many areas of the world may be severely diminished by soil inhabiting pathogens such as Fusarium oxysporum f. sp. pisi race 1, the causal organism of fusarium wilt race 1. Our objective was to identify closely linked marker(s) to the fusarium wilt race 1 resistance gene (Fw) that could be used for marker assisted selection in applied pea breeding programs. Eighty recombinant inbred lines (RILs) from the cross of Green Arrow (resistant) and PI 179449 (susceptible) were developed through single-seed descent, and screened for disease reaction in race 1 infested field soil and the greenhouse using single-isolate inoculum. The RILs segregated 38 resistant and 42 susceptible fitting the expected 1:1 segregation ratio for a single dominant gene (χ2 = 0.200). Bulk segregant analysis (BSA) was used to screen 64 amplified fragment length polymorphism (AFLP) primer pairs and previously mapped random amplified polymorphic DNA (RAPD) primers to identify candidate markers. Eight AFLP primer pairs and 15 RAPD primers were used to screen the RIL mapping population and generate a linkage map. One AFLP marker, ACG:CAT_222, was within 1.4 cM of the Fw gene. Two other markers, AFLP marker ACC:CTG_159 at 2.6 cM linked to the susceptible allele, and RAPD marker Y15_1050 at 4.6 cM linked to the resistant allele, were also identified. The probability of correctly identifying resistant lines to fusarium wilt race 1, with DNA marker ACG:CAT_222, is 96% percent. These markers will be useful for marker assisted breeding in applied pea breeding programs.

Free access

Field studies were conducted during 2010 and 2011 in Knoxville, TN; Lubbock, TX; and Mount Vernon, WA; to compare high tunnel and open-field organic production systems for season extension and adverse climate protection on lettuce (Lactuca sativa) yield and quality. The climates of these locations are diverse and can be typified as hot and humid (Knoxville), hot and dry (Lubbock), and cool and humid (Mount Vernon). In both years, 6-week-old lettuce seedlings of ‘New Red Fire’ and ‘Green Star’ (leafy type), ‘Adriana’ and ‘Ermosa’ (butterhead type), and ‘Coastal Star’ and ‘Jericho’ (romaine type) were transplanted in the late winter or early spring into subplots covered with black plastic and grown to maturity (43 to 65 days). Lettuce harvest in Knoxville occurred at 50 to 62 days after transplanting (DAT), with open-field lettuce harvested an average of 9 days earlier compared with high tunnel plots both years (P > 0.0001). The earlier than anticipated harvests in the open-field in Knoxville in 2010 were due to lettuce bolting. In Lubbock, high tunnel lettuce was harvested an average 16 days earlier in 2010 compared with open-field lettuce (P > 0.0001), while in 2011, high temperatures and bolting required that open-field lettuce be harvested 4 days earlier than lettuce grown in high tunnels. On average, lettuce cultivars at Mount Vernon matured and were harvested 56 to 61 DAT in 2010 and 54 to 64 DAT in 2011 with no significant differences between high tunnel and open-field production systems. Total and marketable yields at Mount Vernon and Lubbock averaged across cultivars were comparable in both high tunnel and open-field plots. At Knoxville, although total yields were significantly higher (P > 0.0062) in high tunnels than open-field plots, incidence of insect, disease, and physiological damage in high tunnel plots reduced lettuce quality and marketable yield (P > 0.0002). Lettuce head length:diameter ratio (LDR) averaged across cultivars was equal between high tunnel and the open field at all three locations. High tunnel production systems offer greater control of environments suitable for lettuce production, especially in climates like Knoxville and Lubbock where later-planted open-field systems may be more susceptible to temperature swings that may affect lettuce quality. These results suggest that although high tunnel culture alone may influence lettuce yield and quality, regional climates likely play a critical role in determining the impact of these two production systems on marketable lettuce yields.

Full access

The functionality of biodegradable mulch can be evaluated in agricultural field settings by visually assessing mulch intactness over time (a measure of deterioration), but it is unclear if mulch deterioration is indicative of mulch degradation as measured by mechanical properties (like breaking force and elongation). This 3-year study (2010–12) examined mulch percent visual deterioration (PVD) during the summer growing season in open-field and high tunnel production systems, and compared these to mulch mechanical properties at mulch installation (12–30 May), midseason (22 July–9 Aug.), and season end (6–25 Oct.), to determine if the field-based measures reliably predict degradation as revealed by changes in mulch mechanical properties. Four different types of biodegradable mulches [two plastic film mulches marketed as biodegradable (BioAgri and BioTelo); one fully biodegradable paper mulch (WeedGuardPlus); and, one experimental spunbonded plastic mulch designed to biodegrade (SBPLA)] were evaluated against a standard nonbiodegradable polyethylene (PE) mulch where tomato (Solanum lycopersicum L. cv. Celebrity) was planted as the model crop. Each year for the 3 years, PVD increased earlier for WeedGuardPlus than the other mulches in both the high tunnel and open field, and WeedGuardPlus had the greatest PVD in both high tunnels and the open field (6% and 48%, respectively). Mechanical strength of WeedGuardPlus also declined by the end of the season both in the high tunnel (up to 46% reduction) and in the open field (up to 81% reduction). PVD of BioAgri and BioTelo reached a maximum of 3% in the high tunnel and 28% in the open field by the end of the season. Mechanical strength of BioAgri and BioTelo did not change over the course of the season in either the open field or high tunnel, even though the ability of these mulches to elongate or stretch declined 89% in the open field and 82% in the high tunnel. SBPLA and PE mulches did not show a change in PVD or mechanical properties in either the high tunnel or the open field. Overall, PVD was three to six times greater by midseason in the open field than in the high tunnels. Although there were significant relationships between visual assessments and various mechanical properties for each mulch except SBPLA, the relationships differed for each mulch when evaluated separately and had coefficients of determination (R 2) below 30%. Furthermore, PVD overestimated mechanical deterioration of BioAgri and BioTelo. Results of this study indicate that mulch visual assessments may reflect general trends in changes in certain mechanical properties of the mulch; however, visual assessment and mechanical properties provide different information on deterioration. Each should be used as needed, but not as a substitute for each other.

Free access