Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: De-Zhu Li x
  • All content x
Clear All Modify Search
Free access

Jun-Bo Yang, Hong-Tao Li, De-Zhu Li, Jie Liu, Lian-Ming Gao, De-Zhu Li, Lian-Ming Gao, and Jie Liu

The Himalayan yew, Taxus wallichiana Zucc., is an endangered species with a scatted distribution in the Eastern Himalayas and southwestern China. In the present study, 10 microsatellite markers from the genome of T. wallichiana were developed using the protocol of fast isolation by amplified fragment length polymorphism of sequences containing repeats (FIASCO). Polymorphism of each locus was assessed in 28 samples from four wild populations of the Himalayan yew. The allele number of the microsatellites ranged from two to five with an average of 2.9 per allele. The observed and expected heterozygosity varied from 0.00 to 1.00 and from 0.3818 to 0.7552, respectively. Cross-species amplification in another two yew species showed eight of them holding promise for sister species. Two of the 10 loci (TG126 and TC49) significantly deviated from Hardy-Weinberg expectations. No significant linkage disequilibrium was detected between the comparisons of these loci. These polymorphic microsatellite markers would be useful tools for population genetics studies and assessing genetic variations to establish conservation strategy of this endangered species.

Free access

Wei Zhou, Hong Wang, De-Zhu Li, Jun-Bo Yang, and Wei Zhou

Luculia pinceana Hook. (Rubiaceae) is a typical distylous species with dimorphic and long-styled monomorphic populations. Within this study, we developed 13 microsatellite markers from L. pinceana using a modified biotin–streptavidin capture method. Polymorphism of each locus was assessed in 30 individuals from four dimorphic populations and one monomorphic population. The average allele number of these microsatellites was 4.153 per locus ranging from three to seven. The observed and expected heterozygosities were from 0.040 to 0.840 and from 0.571 to 0.769, respectively. Additionally, all 13 identified microsatellite markers were successfully amplified in its related species, L. yunnanensis, 10 of which showed polymorphism. These microsatellite markers could provide a useful tool for further study of the breeding system and the population genetic structure in this species and within other Luculia species.