Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Dawn VanLeeuwen x
Clear All Modify Search
Free access

Cathleen Feser, Rolston St. Hilaire and Dawn VanLeeuwen

Mexican elder (Sambucus mexicana Presl.) is used in arid landscapes of the Southwest, but the plant is known for its unpredictable performance in those landscapes. We studied drought responses of mexican elder plants grown in an arid environment using an in-ground nursery production system. Plants were maintained as well-irrigated controls or exposed to cyclic drought and irrigated based on evapotranspiration. Drought treatment lasted 165 days. Plants exposed to drought had more negative predawn and midday water potentials than well-watered plants. The ratio of variable to maximal fluorescence (Fv/Fm) for the drought group (0.76), was near the optimum value of 0.8, suggesting that chloroplasts of drought-stressed plants maintained high levels of activity. Drought cycle, but not drought treatment affected stomatal conductance. Drought-stressed plants had lower transpiration rates than controls except at drought cycle five when transpiration rates were similar between irrigation treatments. Relative water content was higher in controls (76%) than plants exposed to drought (66%). Leaf area of well-irrigated plants was over four times higher than that of plants exposed to drought. Leaf area to root dry weight ratio of drought-stressed plants was 79% lower than control plants. Severely reduced leaf area of drought-stressed plants might be one reason why landscape personnel conclude that mexican elder plants perform poorly in arid landscapes.

Free access

Robert F. Bevacqua and Dawn M. VanLeeuwen

Chile pepper (Capsicum annuum L.) yields are highly variable and are strongly influenced by disease and weather. The goal of two field experiments was to evaluate crop management factors, especially planting date, that could contribute to improved and more consistent crop production. Current practice in New Mexico is to direct seed the crop from 13 to 27 Mar. In the first experiment, chile pepper was direct seeded on three planting dates, 13, 20, and 27 Mar. 2000, without or with a fungicide treatment of pentachloronitrobenzene and mefenoxam for the control of damping off. The results indicate planting date had no effect on stand establishment or yield. Fungicide treatment, significantly reduced stand, but had no effect on yield. In the second experiment, chile pepper was direct seeded on six planting dates, 13, 20, 27 Mar. and 3, 10, 17, Apr. 2001, with or without an application of phosphorus fertilizer, P at 29.4 kg·ha-1, banded beneath the seed row. During the growing season, this experimental planting suffered, as did commercial plantings in New Mexico, from high mortality and stunting due to beet curly top virus, a disease transmitted by the beet leafhopper. The results indicate planting date had a significant effect on crop performance. The best stand establishment and highest yield were associated with the earliest planting date, 13 Mar. This date also resulted in the least viral disease damage. Phosphorus fertilizer had no effect on stand establishment or yield. Chemical names used: pentachloronitrobenzene (PCNB); (R)-2-[(2,6-dimethylphenyl)-methoxyacetylamino]-propionic acid methyl ester (mefenoxam).

Free access

Yahia Othman, Dawn VanLeeuwen, Richard Heerema and Rolston St. Hilaire

Demand for New Mexico’s limited water resources coupled with periodic drought has increased the necessity for tree water status monitoring to guide irrigation scheduling of pecan (Carya illinoinensis) orchards. The objectives of this study were to assess the impact of water status developed during the flood irrigation dry-down cycles on photosynthesis (P n), and gas exchange [stomatal conductance (g S) to H2O (g H2O), transpiration (E), and intercellular CO2 (c i)] and to establish values of midday stem water potential (Ψsmd) that are needed to maintain P n and gas exchange of pecan. We conducted the study simultaneously on two southern New Mexico mature pecan orchards from 2011 through 2013. Flood irrigation as determined by grower practice was used on both orchards and P n, g H2O, E, and c i were assessed at Ψsmd of –0.4 to –2.0 MPa. Photosynthesis and gas exchange were higher in pecan trees shortly after irrigation than trees exhibiting water deficit near the end of a flood irrigation dry-down cycle. The decline in P n was markedly noticeable when Ψsmd dropped below –0.9 MPa. We attributed the reduction in P n mostly to stomatal limitation. The decline in P n and g H2O exceeded 50% when Ψsmd ranged from –1.5 to –2.0 MPa. For those reasons, we recommended that pecan orchards be maintained at Ψsmd higher than –0.90 MPa to prevent significant reductions in carbon assimilation and gas exchange.

Full access

Malik G. Al-Ajlouni, Dawn M. VanLeeuwen and Rolston St. Hilaire

Linking an urban residential landscapes type to a specific landscape water budget is important to water resource management in a desert environment. Yet, no research that we are aware of has effectively associated a specific water budget with a quantitatively determined urban landscape type. The objective of this research was to determine whether a landscape water budget and residential urban landscape type could be related. We previously quantitatively classified urban residential landscapes in the desert environment of Las Cruces, NM, into hard-surface shade-structure, mulch, hard-surface, hard-surface-mulch, mulch tree, turf mulch, turf, tree mulch turf, and turf tree landscape types. In this study, we determined water budget, landscape coefficient, and the portion of the coverage of irrigated and nonirrigated elements for each landscape type. Landscape types in Las Cruces grouped into four distinct water budget groups: no-water, low-, moderate-, and high-water budget. Because of the heterogeneity of the coefficients for grass, plants, and water surfaces that constituted it, the landscape coefficient correlated weakly (r 2 = 0.3) with the water budget. Coverage of the irrigated elements correlated highly (r 2 = 0.95) with the water budget. Our results suggest that the coverage of irrigated elements in a desert urban landscape is a major driver of landscape water budgets.

Full access

Mark E. Uchanski, Kulbhushan Grover, Dawn VanLeeuwen and Ryan Goss

Experiential learning can be used as part of the undergraduate curriculum to provide real-world experience in the classroom. A hands-on hoop house construction project was integrated into an undergraduate general education plant science course at New Mexico State University in Las Cruces. The objectives were to provide students with hands-on experience in hoop house construction and data collection and interpretation, evaluate students’ perception about the educational value of the hoop house construction activity and delivery methods, and evaluate individual student’s perceptions about their participation in the group activity and group dynamics. Eighty-four students were enrolled in Spring 2013 semester. Students were surveyed in a follow-up laboratory 10 weeks after the hoop house construction activity for data collection and reflection. The survey tool assessed the impacts of class materials, laboratory materials, and the laboratory teaching assistants (TAs) on the students’ learning experience: perceptions of group work, their role within their groups, and their participation. Ninety percent and 95% of the students agreed or strongly agreed knowledge of basic techniques and practical application of hoop house construction, respectively, were obtained in the exercise. Eighty-five percent of student respondents indicated a gain in their appreciation for scientific data collection and interpretation through this exercise. Also, a majority (65%) of the students agreed this hands-on task improved their appreciation for group activities indicating experiential learning group work during scheduled class time could be a useful tool for team building and other learning experiences. Finally, more than 90% of the students found this activity overall beneficial. We conclude that integrating hoop house construction and data collection into an undergraduate general education plant science course can be an effective way to enhance student learning.

Full access

Jane E. Spinti, Rolston St. Hilaire and Dawn VanLeeuwen

We surveyed homeowners with residential landscapes in Las Cruces, N.M., to determine design features participants valued in their landscapes, their attitudes toward the landscape use of desert plants and opinions on factors that would encourage respondents to reduce landscape water use. We also determined whether the willingness to use desert plants in their landscapes related to the length of residency in the southwestern United States. At least 98% of respondents landscaped to enhance the appearance of their home and increase their property value. About half (50.6%) of the participants strongly agreed or agreed that the main reason to landscape was to display their landscape preferences. Many participants indicated they would use desert plants to landscape their front yard (80.3%) and back yard (56.3%), but relatively lower percentages of participants actually had desert landscapes in their front yard and back yard. Regardless of their property value, respondents were more likely to use desert plants in their backyard the shorter their stay in the desert. Data revealed that participants rank water shortages as the factor that would most likely cause them to reduce the amount of water they applied to their landscapes. We conclude that homeowners report willingness to use desert plants but desert-type landscapes are not a widespread feature of managed residential landscapes. Furthermore, water shortages and the length of time respondents spent in a desert environment would most likely influence water use in their landscapes.

Restricted access

Joshua Sherman, Richard J. Heerema, Dawn VanLeeuwen and Rolston St. Hilaire

Southwestern U.S. pecan [Carya illinoinensis (Wangenh.) K. Koch] orchard soils are typically alkaline and calcareous, making micronutrients such as manganese (Mn) poorly available for root uptake. Manganese is essential to the light reactions of photosynthesis (Pn), but the level of leaf Mn for optimum Pn in pecan is unknown. Our objective was to characterize the relationships of foliar Mn fertilizer applications and leaf Mn nutrition with Pn over a broad range of leaf Mn concentrations. Two experiments were conducted from 2011 to 2012 (Expt. 1) and in 2013 (Expt. 2) in immature, nonbearing ‘Pawnee’ and ‘Western’ pecan orchards near Las Cruces, NM. To create differential leaf tissue Mn concentrations, four Mn spray concentrations were applied foliarly: 0.00, 0.34, 0.68, and 1.3 g Mn/L (Control, Low, Medium, and High, respectively). In Expt. 2, we added a higher Mn concentration (2.7 g Mn/L). Repeated measurements of leaf Pn were made beginning 1 week following a Mn application using a portable Pn system. Across treatments in both studies, final leaf Mn concentrations ranged from 21 to 1488 µg·g−1. Leaves treated with 0.68 g Mn/L had higher Pn than the other treatments in each experiment. In 2013, Pn rates of the leaves treated with 0.68 g Mn/L increased 7.1% and 10.4% over the Control for ‘Pawnee’ and ‘Western’, respectively. Our data confirm an association between leaf tissue Mn and Pn; the leaf tissue Mn concentration at which Pn rates are optimized in immature pecan trees was estimated to be 151.64 (±17.3 se) µg·g−1 Mn.

Free access

Emad Bsoul, Rolston St. Hilaire and Dawn M. VanLeeuwen

Although bigtooth maple (Acer grandidentatum Nutt.) is an ornamental plant that might thrive in managed landscapes in arid and semiarid regions, little information on the drought tolerance of bigtooth maples appears to be available. We studied water relations, plant development, and carbon isotope composition of bigtooth maples indigenous to New Mexico, Texas, and Utah that were field-grown in New Mexico using a pot-in-pot nursery production system. Plants were maintained as well-irrigated controls or irrigated after the weight of pots decreased by 35% due to evapotranspiration. Bigtooth maples subjected to drought had more negative predawn leaf water potentials (−0.76 MPa) than the plants in the control treatment (−0.64 MPa). Drought did not affect midday leaf water potential of seed sources. Trees native to the Lost Maples State Natural Area in Vanderpool, TX (designated LMP5), had the greatest leaf area (1236 cm2) among plants from all sources, while those native to Logan Canyon in Cache County, UT (designated UW2), had among the smallest leaf area (216 cm2). Leaf area ratio (LAR) was highest in plants from LMP5 (24.23 cm2·g−1), which suggests that they have potential for more carbon assimilation than the other plants tested. Plants from LMP5 had the highest leaf area/xylem diameter ratio (135 cm−2·mm−1). This ratio was 5.8 times higher than that of UW2, which had among the lowest leaf area/xylem diameter ratios. The high leaf area/xylem diameter ratio of LMP5 plants relative to UW2 plants indicates that LMP5 plants had a larger surface area of tissues that transpire relative to those that transport water. Treatment did not affect stomatal conductance (g S) or transpiration, but g S and transpiration were positively correlated for both drought-stressed (r 2 = 0.801) and well-irrigated plants (r 2 = 0.759). Plants from New Mexico (designated DS) had the lowest transpiration rate (2.32 mmol·m−2·s−1), lowest g s (52.1 mmol·m−2·s−1), largest xylem diameter (11 mm), and had among the largest shoot dry weight (DW) and plant height. Plants did not differ either among sources or between treatments in the ratio of variable to maximal fluorescence (mean = 0.64), relative water content (averaged 57%), specific leaf weight, stem DW, root DW, and plant DW. Carbon isotope discrimination (Δ) averaged −26.53‰ and did not differ among plant sources or irrigation treatments. This suggests that Δ might not be effective in screening bigtooth maples for drought tolerance. Low transpiration rate, g S, and high shoot dry weight in DS plants and traits, such as a high LAR in plants from LMP5, suggest that plants selected from these provenances might effectively endure deficit irrigation.

Full access

Rolston St. Hilaire, Dawn M. VanLeeuwen and Patrick Torres

We surveyed homeowners with residential landscapes in Santa Fe, NM, to determine their attitudes toward high desert plants and to assess their preferences for urban landscapes and water conservation strategies in a high desert urban environment. While there was low acceptance for the traditional turf lawn, 64% of residents agreed that high desert plants provided the variety they needed in their residential landscapes and 92% of residents would use high desert plants to landscape their front yard. Homeowners had a strong preference for retaining their current desert landscapes and converting traditional landscapes to high desert-adapted landscapes. Logistic regression revealed a negative relationship between length of residency in the southwestern United States and the willingness to use high desert plants. When homeowners who irrigated their landscape were asked whether water shortages, environmental concerns, information on water, city regulations, high water bills, or water rate increases would cause them to use less water on their landscapes, the highest level of agreement (94%) was for water shortages. Eighty-eight percent of respondents agreed that they liked any type of landscape that contains interesting features and is well planned. We conclude that homeowners have a preference for desert-adapted landscapes and agree that high desert plants provide an adequate palette of plants for urban landscapes. Additionally, the length of residency in the southwestern U.S. and the possibility of water shortages have the potential to impact water conservation strategies in high desert urban landscapes.

Free access

Yahia Othman, Caiti Steele, Dawn VanLeeuwen and Rolston St. Hilaire

For large fields, remote sensing might permit plant low moisture status to be detected early, and this may improve drought detection and monitoring. The objective of this study was to determine whether canopy and soil surface reflectance data derived from a handheld spectroradiometer can detect moisture status assessed using midday stem water potential (ψsmd) in pecan (Carya illinoinensis) during cyclic flood irrigations. We conducted the study simultaneously on two mature pecan orchards, one in a sandy loam (La Mancha) and the other in a clay loam (Leyendecker) soil. We were particularly interested in detecting moisture status in the −0.90 to −1.5 MPa ψsmd range because our previous studies indicated this was the critical range for irrigating pecan. Midday stem water potential, photosynthesis (A) and canopy and soil surface reflectance measurements were taken over the course of irrigation dry-down cycles at ψsmd levels of −0.40 to −0.85 MPa (well watered) and −0.9 to −1.5 MPa (water deficit). The decline in A averaged 34% in La Mancha and 25% in Leyendecker orchard when ψsmd ranged from −0.9 to −1.5 MPa. Average canopy surface reflectance of well-watered trees (ψsmd −0.4 to −0.85 MPa) was significantly higher than the same trees experiencing water deficits (ψsmd −0.9 to −1.5 MPa) within the 350- to 2500-nm bands range. Conversely, soil surface reflectance of well-watered trees was lower than water deficit trees over all bands. At both orchards, coefficient of determinations between ψsmd and all soil and canopy bands and surface reflectance indices were less than 0.62. But discriminant analysis models derived from combining soil and canopy reflectance data of well-watered and water-deficit trees had high classification accuracy (overall and cross-validation classification accuracy >80%). A discriminant model that included triangular vegetation index (TVI), photochemical reflectance index (PRI), and normalized soil moisture index (NSMI) had 85% overall accuracy and 82% cross-validation accuracy at La Mancha orchard. At Leyendecker, either a discriminant model weighted with two soil bands (690 and 2430 nm) or a discriminant model that used PRI and soil band 2430 nm had an overall classification and cross-validation accuracy of 99%. In summary, the results presented here suggest that canopy and soil hyperspectral data derived from a handheld spectroradiometer hold promise for discerning the ψsmd of pecan orchards subjected to flood irrigation.