Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: David Rao x
Clear All Modify Search

Carotenoids have a wide range of human health benefits. Yellow-fleshed tetraploid potato (Solanum tuberosum) cultivars have more than twice the concentration of carotenoids as white-fleshed cultivars. However, carotenoid concentrations in some diploid potatoes have been reported to be up to 13 times higher than in ‘Yukon Gold’, the most popular yellow-fleshed potato cultivar grown in the United States, and up to 22 times higher than in white-fleshed potatoes. The purpose of this study was to determine the feasibility of using these high-carotenoid diploids to develop high-carotenoid tetraploid germplasm. Three diploid clones with high (dark yellow-flesh), moderate (moderate yellow-flesh), and low (white–cream-flesh) carotenoid levels that produced 2n pollen were crossed with a light yellow-fleshed tetraploid advanced breeding selection to determine the inheritance of carotenoid content. Twenty-six to 43 progeny from these three 4x-2x families were grown in a replicated field experiment in Presque Isle, ME, for 2 years. After harvest, carotenoids were extracted and quantified by high-performance liquid chromatography in 13 to 14 randomly selected clones from each family; however, flesh color was scored as white or yellow in all progeny. A continuous distribution of carotenoid concentration with high- and low-carotenoid segregants was observed in all three families. There were no significant differences among these three families for individual or total carotenoid concentrations; however, there were significant differences among clones within families. Broad-sense heritability estimates were high for total carotenoid (0.81), lutein (0.77), zeaxanthin (0.73), and the lycopene beta-cyclase pathway carotenoids (0.73); moderate for neoxanthin (0.42); and low for violaxanthin (0.21) and antheraxanthin (0.13). Based on flesh color segregation, the two yellow-fleshed diploid parents were heterozygous for the Chy2 allele governing yellow-flesh and produced 2n gametes by a second division restitution mechanism. It appears that selection for high-carotenoid tetraploid germplasm can be made from within any family with at least one yellow-fleshed parent. Selections will have to be made on an individual clonal basis rather than on a family basis.

Free access

Consumption of carotenoid-containing foods can promote human health. Although yellow-fleshed potatoes (Solanum tuberosum) have a higher carotenoid content than white-fleshed potatoes, little is known about how growing environments may affect individual and total carotenoid content in different potato clones. The purposes of this study were to estimate the amount of genetic variability in potato for five xanthophyll carotenoids, their concentration, and to determine the stability of these carotenoids across environments. Nine white- or yellow-fleshed tetraploid clones were grown in Maine and Florida for 2 years. Carotenoids were extracted in acetone and analyzed by high-performance liquid chromatography. There were significant differences among clones for zeaxanthin, antheraxanthin, lutein, and total carotenoid content. There were significant clone × environment interactions for zeaxanthin, antheraxanthin, violaxanthin, neoxanthin, lutein, and total carotenoid. Broad-sense heritabilities (and their 95% confidence intervals) were 0.89 (0.79–0.98) for zeaxanthin, 0.93 (0.87–0.99) for antheraxanthin, 0.68 (0.14–0.92) for violaxanthin, 0.51 (0.00–0.88) for neoxanthin, 0.85 (0.70–0.97) for lutein, and 0.96 (0.89–0.99) for total carotenoid. Clonal mean total carotenoid content ranged from 101 to 511 μg/100 g fresh weight. A higher proportion of carotenoids were produced by the lycopene epsilon cyclase branch of the carotenoid biosynthetic pathway in white-fleshed than yellow-fleshed clones. Total carotenoid content in B2333-5 was significantly greater than in ‘Yukon Gold’. With genetic variation for individual and total carotenoid content in potatoes, improving the levels of carotenoids has been and should continue to be feasible; however, concentrations are likely to vary in different environments.

Free access

Seeds of Coreopsis leavenworthii Torr. & Gray (Asteraceae) are being commercially produced but the lack of genetic diversity information has hindered growers and end users from addressing several critical issues affecting wild collection, commercial production, distribution, and the use of seeds. In this study, the genetic diversity and differentiation among natural, production, and introduced populations were analyzed at the molecular level using 320 amplified fragment length polymorphism (AFLP) markers. A high level of diversity [68.6% average polymorphism; total genetic diversity (H t ) = 0.309] and a moderate level of genetic differentiation [total genetic diversity residing among populations (G st ) = 0.226; Φ st = 0.244; Bayesian analog of Nei's G st (G st -B) = 0.197] was detected among six natural populations—two each from northern, central, and southern Florida. Two distance-based clustering analyses, based on an individual's AFLP phenotypes or a population's allele frequencies, grouped natural populations into three clusters, concordant with our previous results from a common garden study of phenotypic variation. Clustering of populations was mostly according to their respective geographical origin within Florida. The correlation between geographical distances and pairwise F st values between populations was very significant (r = 0.855, P < 0.0001). Two central Florida natural populations were divergent and grouped into separate clusters, indicating that the existence of factors other than physical distance alone were contributing to genetic isolation. Three production populations maintained a level of genetic diversity comparable to that in the natural populations and were grouped with the natural populations from which the production populations were derived, suggesting that the genetic identity of the seed origin was maintained under production practices. The genetic diversity of the introduced population was comparable to that of the source populations (central Florida natural populations), but genetic shift seems to have occurred, causing the introduced population to cluster with local (northern Florida) populations where planted. The observed genetic differentiation among natural populations may indicate a need to develop appropriate zones within Florida for preservation of genetic diversity during seed collection, increase, and distribution. This high level of population differentiation also suggests a need to collect and analyze more natural populations across Florida and from Alabama for a better understanding of the species' genetic diversity and population structure across its distribution range.

Free access

As one of the Florida's state wildflowers, Coreopsis leavenworthii is highly desirable for roadside plantings in all parts of the state. Seeds of this species are being produced by growers. Where should seed be produced for different ecotypes? Where can the seed be used? These are among questions that have arisen in commercial seed production and distribution. To address these questions, it was necessary to assess the levels of genetic diversity. Eleven populations (242 total individuals) were collected from different parts of Florida, grown at one location in central Florida, and observed for morphological variations. North Florida natural populations had more complex leaves, while south Florida natural populations had smaller flowers. Principal component analyses revealed that two of the seven characteristics studied accounted for as much as 88% of the morphological variations observed. Molecular diversity was analyzed by using the fluorescent amplified fragment length polymorphism (AFLP) technique and the capillary sequencing system. Four primer combinations detected 320 AFLP fragments, of which 90.6% were polymorphic. The overall genetic diversity in the species was 0.2206 (estimated using AMOVA), of which 77.9% was within populations and 22.1% was among populations. The genetic distance among populations seemed to be loosely correlated with geographical distances. A high level of gene flow was found in several populations. Based on the results, a model has been developed to describe the genetic relationship of Coreopsis leavenworthii populations.

Free access