Search Results

You are looking at 1 - 10 of 49 items for

  • Author or Editor: David R. Bryla x
Clear All Modify Search
Author:

A study was done to determine the effects of irrigation with different drip configurations on growth of newly planted highbush blueberries (Vaccinium corymbosum L. `Duke'). Plants were grown on raised beds mulched with sawdust. Different configurations included two laterals of drip tubing placed on the soil surface on each side of the plants, two laterals buried 0.1 m deep on each side of the plants, and one lateral suspended 1.2 m above the plants. Each treatment was irrigated three times per week (when needed) with enough water to replace 100% of the estimated crop evapotranspiration requirements. During the first 2 years after planting, plants irrigated by buried drip were larger and produced significantly more whips than those irrigated by drip placed at the soil surface. The size and whip number of those irrigated by suspended drip were intermediate. Subsurface drip eliminated water runoff and bed erosion observed with both surface drip configurations. It also maintained lower soil water content near the plant crown. Since plants tested positive for phytophthora and pythium root rot, lower soil water content may have reduced problems with the disease. As plants mature, the next objective will be to determine the effects of each drip configuration on fruit production.

Free access
Author:

Right fertilizer placement is one of the 4Rs of an effective nutrient stewardship system and should be combined with considerations for the right fertilizer source, rate, and timing. Fertilizer placement decisions depend on mobility of applied nutrients in the soil and the depth and distribution of the crop's root system. Various methods are used to apply fertilizers to horticultural crops, including broadcasting, banding, fertigation, foliar application, and microinjection. Generally, the most appropriate method for any crop increases productivity and profitability and improves fertilizer use efficiency but varies depending on the nutrient element, fertilizer source, soil characteristics, cultural practices, stage of crop development, weather conditions, and farming enterprise constraints. Comparisons among application methods are available for many crops and provide useful information for improving fertilizer placement practices, but many practical questions such as how fertilizer source and availability are affected by irrigation interactions or whether there are ways to manage crop roots for more effective nutrient uptake still remain.

Full access

A 2-year study was done in Oregon to determine the effects of irrigation method and level of water application on the development of root rot in northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). Plants were grown on mulched, raised beds and irrigated by overhead sprinklers, microsprays, or drip at 50%, 100%, and 150% of the estimated crop evapotranspiration requirement. Soil at the site was a silty clay loam. By the end of the first season, plants were largest with drip, intermediate-sized with microsprays and smallest with sprinklers; however, this was not the case the next season. By the end of year 2, plants irrigated by drip had less canopy cover, fewer new canes, lower pruning weights, and only half the shoot and root dry weight as plants irrigated by sprinklers or microsprays. Destructive sampling revealed that the field was infested by root rot. Less growth with drip was association with higher levels of infection by the root pathogen, Phytophthora cinnamomi. Phytophthora infection increased with water application, regardless of irrigation method, but averaged 14% with drip and only 7% with sprinklers and microsprays. Roots were also infected by Pythium spp. Pythium infection likewise increased with the total amount of water applied but, unlike P. cinnamomi, was similar among irrigation methods. Overall, drip irrigation maintained higher soil water content near the base of the plants than sprinklers and microsprays, resulting in conditions more favorable to root rot. Sprinklers and microsprays may be better alternatives than drip at sites prone to problems with the disease.

Free access

Fertigation with liquid sources of nitrogen (N) fertilizers, including ammonium sulfate and urea, were compared with granular applications of the fertilizers in northern highbush blueberry (Vaccinium corymbosum L. ‘Bluecrop’) during the first 5 years of fruit production (2008–12). The planting was established in Apr. 2006 at a field site located in western Oregon. The plants were grown on raised beds and mulched every 2 years with sawdust. Liquid fertilizers were injected through a drip system in equal weekly applications from mid-April to early August. Granular fertilizers were applied on each side of the plants, in three split applications from mid-April to mid-June, and washed into the soil using microsprinklers. Each fertilizer was applied at three N rates, which were increased each year as the plants matured (63 to 93, 133 to 187, and 200 to 280 kg·ha−1 N) and compared with non-fertilized treatments (0 kg·ha−1 N). Canopy cover, which was measured in 2008 only, and fresh pruning weight were greater with fertigation than with granular fertilizer and often increased with N rate when the plants were fertigated but decreased at the highest rate when granular fertilizer was applied. Yield also increased with N fertilizer and was 12% to 40% greater with fertigation than with granular fertilizer each year as well as 17% greater with ammonium sulfate than with urea in 2011. The response of berry weight to the treatments was variable but decreased with higher N rates during the first 3 years of fruit production. Leaf N concentration was greater with fertigation in 4 of 5 years and averaged 1.68% with fertigation and 1.61% with granular fertilizer. Leaf N was also often greater with ammonium sulfate than with urea and increased as more N was applied. Soil pH declined with increasing N rates and was lower with granular fertilizer than with fertigation during the first 3 years of fruit production and lower with ammonium sulfate than with urea in every year but 2010. Soil electrical conductivity (EC) was less than 1 dS·m−1 in each treatment but was an average of two to three times greater with granular fertilizer than with fertigation and 1.4 to 1.8 times greater with ammonium sulfate than with urea. Overall, total yield averaged 32 to 63 t·ha−1 in each treatment over the first 5 years of fruit production and was greatest when plants were fertigated with ammonium sulfate or urea at rates of at least 63 to 93 kg·ha−1 N per year.

Free access

Raspberry and blackberry (Rubus sp.) plantings have a relatively low nutrient requirement compared with many other perennial fruit crops. Knowledge of annual accumulation of nutrients and periods of rapid uptake allows for better management of fertilization programs. Annual total nitrogen (N) accumulation in the aboveground plant ranged from 62 to 110 and 33 to 39 lb/acre in field-grown red raspberry (Rubus idaeus) and blackberry (Rubus ssp. rubus), respectively. Research on the fate of applied 15N (a naturally occurring istope of N) has shown that primocanes rely primarily on fertilizer N for growth, whereas floricane growth is highly dependent on stored N in the over-wintering primocanes, crown, and roots; from 30% to 40% of stored N was allocated to new growth. Plants receiving higher rates of N fertilizer took up more N, often leading to higher N concentrations in the tissues, including the fruit. Reallocation of N from senescing floricanes and primocane leaves to canes, crown, and roots has been documented. Accumulation of other macro- and micronutrients in plant parts usually preceded growth. Primocanes generally contained the highest concentration of most nutrients during the growing season, except calcium (Ca), copper (Cu), and zinc (Zn), which often were more concentrated in roots. Roots typically contained the highest concentration of all nutrients during winter dormancy. Nutrient partitioning varied considerably among elements due to different nutrient concentrations and requirements in each raspberry and blackberry plant part. This difference not only affected the proportion of each nutrient allocated to plant parts, but also the relative amount of each nutrient lost or removed during harvest, leaf senescence, and pruning. Macro- and micronutrient concentrations are similar for raspberry and blackberry fruit, resulting in a similar quantity of nutrient removed with each ton of fruit at harvest; however, yield may differ among cultivars and production systems. Nutrient removal in harvested red raspberry and blackberry fruit ranged from 11 to 18 lb/acre N, 10 to 19 lb/acre potassium (K), 2 to 4 lb/acre phosphorus (P), 1 to 2 lb/acre Ca, and 1 to 4 lb/acre magnesium (Mg). Pruning senescing floricanes in August led to greater plant nutrient losses than pruning in autumn. Primocane leaf nutrient status is often used in nutrient management programs. Leaf nutrient concentrations differ with primocane leaf sampling time and cultivar. In Oregon, the present recommended sampling time of late July to early August is acceptable for floricane-fruiting raspberry and blackberry types, and primocane-fruiting raspberry, but not for primocane-fruiting blackberry, where sampling leaves on primocane branches during the green fruit stage is recommended. Presently published leaf tissue standards appear to be too high for K in primocane-fruiting raspberry and blackberry, which is not surprising since the primocanes are producing fruit at the time of sampling and fruit contain a substantial amount of K.

Free access

Northern highbush blueberry (Vaccinium corymbosum) is well adapted to acidic soils with low nutrient availability, but often requires regular applications of nitrogen (N) and other nutrients for profitable production. Typically, nutrients accumulate in the plant tissues following the same pattern as dry matter and are lost or removed by leaf senescence, pruning, fruit harvest, and root turnover. Leaf tissue testing is a useful tool for monitoring nutrient requirements in northern highbush blueberry, and standards for analysis have been updated for Oregon. Until recently, most commercial plantings of blueberry (Vaccinium sp.) were fertilized using granular fertilizers. However, many new fields are irrigated by drip and fertigated using liquid fertilizers. Suitable sources of liquid N fertilizer for blueberry include ammonium sulfate, ammonium thiosulfate, ammonium phosphate, urea, and urea sulfuric acid. Several growers are also applying humic acids to help improve root growth and are injecting sulfuric acid to reduce carbonates and bicarbonates in the irrigation water. Although only a single line of drip tubing is needed for adequate irrigation of northern highbush blueberry, two lines are often used to encourage a larger root system. The lines are often installed near the base of the plants initially and then repositioned 6–12 inches away once the root system develops. For better efficiency, N should be applied frequently by fertigation (e.g., weekly), beginning at budbreak, but discontinued at least 2 months before the end of the growing season. Applying N in late summer reduces flower bud development in northern highbush blueberry and may lead to late flushes of shoot growth vulnerable to freeze damage. The recommended N rates are higher for fertigation than for granular fertilizers during the first 2 years after planting but are similar to granular rates in the following years. More work is needed to develop fertigation programs for other nutrients and soil supplements in northern highbush blueberry.

Free access

Plant water requirements were investigated in three northern highbush blueberry (Vaccinium corymbosum L.) cultivars, Duke, Bluecrop, and Elliott, grown either at a high-density spacing of 0.45 m apart within rows or a more traditional spacing of 1.2 m. Spacing between rows was 3.0 m. As is typical for the species, each cultivar was shallow-rooted with most roots located less than 0.4 m deep, and each was sensitive to soil water deficits with plant water potentials declining as low as −1.6 MPa within 5 to 7 days without rain or irrigation. Compared with traditional spacing, planting at high density significantly reduced dry weight and yield of individual plants but significantly increased total dry weight and yield per hectare. High-density planting also significantly increased total canopy cover and water use per hectare. However, although canopy cover (often considered a factor in water use) increased up to 246%, water use never increased more than 10%. Because of more canopy cover at high density, less water penetrated the canopy during rain or irrigation (by overhead sprinklers), reducing both soil water availability and plant water potential in each cultivar and potentially reducing water use. Among cultivars, water use was highest in ‘Duke’, which used 5 to 10 mm·d−1, and lowest in ‘Elliott’, which used 3 to 5 mm·d−1. Peak water use in each cultivar was during fruit development, but water use after harvest declined sharply. Longer irrigation sets (i.e., longer run times) or alternative irrigation methods (e.g., drip) may be required when growing blueberry at high density, especially in cultivars with dense canopies such as ‘Elliott’.

Free access

Heat-related fruit damage is a prevalent issue in northern highbush blueberry (Vaccinium corymbosum L.) in various growing regions, including the northwestern United States. To help address the issue, we developed a simple climatological model to predict blueberry fruit temperatures based on local weather data and to simulate the effects of using over-canopy sprinklers for cooling the fruit. Predictions of fruit temperature on sunny days correlated strongly with the actual values (R 2 = 0.91) and had a root mean-square error of ≈2 °C. Among the parameters tested, ambient air temperature and light intensity had the greatest impact on fruit temperature, whereas wind speed and fruit size had less impact, and relative humidity had no impact. Cooling efficiency was estimated successfully under different sprinkler cooling intervals by incorporating a water application factor that was calculated based on the amount of water applied and the time required for water to evaporate from the fruit surface between the intervals. The results indicate that water temperature and nozzle flow rate affected the extent to which cooling with sprinklers reduced fruit temperature. However, prolonging the runtime of the sprinklers did not guarantee lower temperatures during cooling, because cooling efficiency declined as the temperature of the fruit approached the temperature of the irrigation water. Users could incorporate the model into weather forecast programs to predict the incidence of heat damage and could use it to make cooling decisions in commercial blueberry fields.

Open Access

Weed management practices were evaluated in a new field of trailing blackberry (Rubus L. subgenus Rubus Watson) established in western Oregon. The field was planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, Marion and Black Diamond, grown in 1) non-weeded plots, where weeds were cut to the ground just before harvest; 2) hand-weeded plots, hoed two to three times per year; and 3) weed mat plots, covered with black landscape fabric. Each treatment was fertilized with fish emulsion and irrigated by drip. Weeds increased from 2010 through 2012 in both non-weeded and hand-weeded plots and required 38 and 90 h·ha−1 of labor to remove the weeds in the latter treatment in 2011 and 2012, respectively. Weeds in weed mat plots, in comparison, were confined primarily to the planting holes in the fabric and required only 1 h·ha−1 of labor for weed removal each year. Blackberry growth, in terms of number and dry weight of the primocanes, was similar among treatments during the first year after planting but differed with cultivar and weed management the next season. In 2011, ‘Black Diamond’ produced shorter but an average of three more primocanes per plant than ‘Marion’, whereas plants in hand-weeded and weed mat plots produced nearly twice as many primocanes as non-weeded plots. Hence, when fruit were produced on floricanes (the previous year’s primocanes) for the first time in 2012, ‘Black Diamond’ had 15% more yield than ‘Marion’, and weed control increased yield by 67% with hand-weeding and 100% with weed mat, on average. ‘Black Diamond’ and weed control also produced larger berries (measured as average individual fruit weight) with a greater water content but a lower soluble solids concentration. So far, of the three practices studied, weed mat was best suited to organic production of blackberries. The initial cost of the weed mat was far less than the cost of hand-weeding during the first 3 years after planting, and after only one season of fruit production, the yield benefit of weed mat provided enough profit to warrant its use over no weeding or hand-weeding.

Free access

A study was conducted in western Oregon to assess the impact of cultivar and weed management strategy on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer. The study was conducted in trailing blackberry (Rubus L. subgenus Rubus Watson) planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, Marion and Black Diamond, each with either no weed control after the first year after planting or with weeds managed by hand-weeding or the use of weed mat. Each treatment was amended with organically approved fertilizers at pre-plant and was drip-fertigated with fish emulsion each spring. Most primocane leaf nutrient concentrations were within the range recommended for blackberry. However, leaf nitrogen (N) was low in ‘Black Diamond’, especially when grown without weed control, whereas leaf boron (B) was low in all treatments. In many cases, leaf nutrient concentrations were affected by cultivar and weed management in both the primocanes and the floricanes. The concentration of several nutrients in the fruit differed between cultivars, including calcium (Ca), magnesium (Mg), sulfur (S), B, and zinc (Zn), but only fruit Ca was affected by weed management and only in ‘Marion’. In this case, fruit Ca was higher when the cultivar was grown with weed mat than with hand-weeding or no weeding. Total biomass production of primocanes increased from an average of 0.3 t·ha−1 dry weight (DW) during the first year after planting to 2.0 t·ha−1 DW the next year. Plants were first cropped the third year after planting and gained an additional 3.3 t·ha−1 DW in total aboveground biomass (primocanes, floricanes, and fruit) by the end of the third season. Fruit DW averaged 1.4 t·ha−1 in non-weeded plots, 1.9 t·ha−1 in hand-weeded plots, and 2.3 t·ha−1 in weed mat plots. Biomass of senesced floricanes (removed after harvest) averaged 3.2 t·ha−1 DW and was similar between cultivars and among the weed management treatments. ‘Marion’ primocanes accumulated a higher content of N, phosphorus (P), potassium (K), Mg, S, iron (Fe), B, copper (Cu), and aluminum (Al) than in ‘Black Diamond’. Weeds, however, reduced nutrient accumulation in the primocanes in both cultivars, and accumulation of nutrients was greater in the floricanes than in the previous year’s primocanes. Total nutrient content declined from June to August in the floricanes, primarily through fruit removal at harvest and senescence of the floricanes after harvest. Depending on the cultivar and weed management strategy, nutrient loss from the fruit and floricanes averaged 34 to 79 kg·ha−1 of N, 5 to 12 kg·ha−1 of P, 36 to 84 kg·ha−1 of K, 23 to 61 kg·ha−1 of Ca, 5 to 15 kg·ha−1 of Mg, 2 to 5 kg·ha−1 of S, 380 to 810 g·ha−1 of Fe, 70 to 300 g·ha−1 of B, 15 to 36 g·ha−1 of Cu, 610 to 1350 g·ha−1 of manganese (Mn), 10 to 260 g·ha−1 of Zn, and 410 to 950 g·ha−1 of Al. Overall, plants generally accumulated (and lost) the most biomass and nutrients with weed mat and the least with no weed control.

Free access