Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: David H. Picha x
  • All content x
Clear All Modify Search
Free access

Malkeet S. Padda and David H. Picha

Three different style fresh-cut (shredded, French fry, and sliced) sweetpotatoes [Ipomoea batatas (L.) Lam.] were stored at 0 and 5 °C for 4 and 8 days. At specified storage intervals, the fresh-cut sweetpotatoes were analyzed for total phenolics, individual phenolic acids, and antioxidant activity. Sweetpotato tissue analyzed immediately after cutting was considered the control. Storage at 5 °C resulted in an increase in total phenolics in all types of fresh-cut sweetpotatoes, except in shredded tissue analyzed after 4 days of storage. However, at 0 °C, only sliced tissue accumulated higher total phenolics than the control. In general, antioxidant activity in all fresh-cut sweetpotatoes held at 5 °C was higher than in the control. No significant increase in antioxidant activity was observed in shredded sweetpotatoes stored at 0 °C. Chlorogenic acid followed by 3,5-dicaffeoylquinic acid were the predominant phenolic acids present in fresh-cut sweetpotatoes. The highest content of chlorogenic acid (539.9 μg·g−1 dry weight) in sliced tissue stored for 8 days at 5 °C was ≈6-fold higher than in the control (88.3 μg·g−1 dry weight). No significant development of tissue browning, off-odors, or off-flavors were observed after 8 days of storage and the products were considered to be marketable.

Free access

Malkeet S. Padda and David H. Picha

Phenolic compounds and antioxidant activity were quantified in the principal sweetpotato cultivars marketed in the European Union. Total phenolic content, individual phenolic acids, and antioxidant activity in each cultivar were determined using Folin-Denis reagent, reversed-phase HPLC, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, respectively. Significant differences in phenolic composition and antioxidant activity were found between cultivars. A Jamaican-grown, white-fleshed cultivar had the highest total phenolic content [4.11 mg·g-1 chlorogenic acid (dry tissue weight)], while the highest antioxidant activity [3.60 mg·g-1 Trolox (dry tissue weight)] was observed in the orange-fleshed California-grown cultivar Diane. Chlorogenic acid and 3,5-dicaffeoylquinic acid were the predominant phenolic acids, while caffeic acid was the least abundant in most cultivars. The highest content of chlorogenic acid (0.42 mg·g-1 dry tissue weight); 3,5-dicaffeoylquinic acid (0.43 mg·g-1 dry tissue weight); and 3,4-dicaffeoylquinic acid (0.25 mg·g-1 dry tissue weight) was present in the white-fleshed Jamaican cultivar. The orange-fleshed cultivars Diane and Beauregard had the highest content of caffeic acid (0.13 mg·g-1 dry tissue weight) and 4,5-dicaffeoylquinic acid (0.32 mg·g-1 dry tissue weight), respectively.

Free access

David H. Picha and Roger A. Hinson

The origin and distribution of counter-seasonal fresh fruit and vegetable imports from Latin America into the U.S. was evaluated. Infrastructure comparisons were made among various U.S. ports of entry capable of receiving perishables. Economic comparisons were made utilizing different transportation routes. Market boundary analyses indicated significant cost savings would result from changing existing transportation routes to certain final U.S. destinations. Currently the port of Philadelphia receives the majority of South American fruit which is mostly shipped break bulk or palletized. South Florida ports (Miami and Port Everglades) receive the majority of Central American and Caribbean fruits and vegetables which are mostly shipped containerized. Interest exists among Latin American exporters to diversify their U.S. ports of entry in order to avoid distribution bottlenecks. Future trade routes will likely see an increased utilization of more economical U.S. Gulf of Mexico ports.

Free access

Don R. LaBonte and David H. Picha

Six sweetpotato cultivars were evaluated for changes in individual sugar concentration, dry weight, and alcohol insoluble solids (AIS) during growth and development. Measurements were taken at weekly intervals from 7 to 21 weeks after transplanting. Sucrose, the major sugar during all stages of development, generally increased in concentration throughout development for `Heart-o-gold', `Travis', and `Jewel', but peaked at 17 weeks for `Beauregard' and `Whitestar'. The high-dry matter white flesh cultivars of `Rojo Blanco' and `Whitestar' contained the lowest sucrose concentration. The monosaccharides glucose and fructose generally decreased in concentration up to 17 weeks in 4 of 6 cultivars, followed by an increase from 17 to 21 weeks in all cultivars. Glucose concentration was marginally greater than fructose at all stages of development in each cultivar. Little or no increase in total sugar concentration occurred during development in `Whitestar' and `Rojo Blanco'. A substantial increase in total sugars occurred during development with `Jewel', `Beauregard', `Heart-o-gold' and `Travis'. Cultivars differed widely in their individual sugar concentrations during development. Percent dry matter increased in all cultivars from 7 to 14 weeks. Dry matter and AIS decreased during the later stages of development.

Free access

Ahmed F. El-Shiekh and David H. Picha

Peaches stored in air for 40 days at OC developed severe internal breakdown and poor quality after transferring them to 20C to ripen. Comparable fruit stored under controlled atmosphere (1% O2 + 5% CO2) and then ripened at 20C had no breakdown and retained good quality. Fruit stored under CA had less reducing sugars but more sucrose than air stored fruit. Fruit pH increased and titratable acidity decreased over a 40 day storage period. Citric acid increased slightly while malic acid decreased during storage. Little or no differences in overall acidity and individual organic acids existed between CA and air storage. Little or no change in individual phenolic acid content occurred during storage or between CA and air storage. Internal color darkened and became redder with storage. CA stored fruit was significantly firmer than air stored fruit. Sensory evaluation indicated CA stored fruit was more acidic, sweeter, and had better overall flavor than air stored fruit.

Free access

Malkeet S. Padda and David H. Picha

Three different style cuts of minimally processed sweetpotatoes (shredded, French-fry, and sliced) were stored at 0 °C and 5 °C for 4 and 8 days. Total phenolic content, individual phenolic acids, and free radical scavenging activity were determined using Folin-Denis reagent, reversed-phase HPLC, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, respectively. Total phenolic content in sliced cut sweetpotatoes held at 5 °C was higher than in the shredded cut. Both sliced and French-fry cut sweetpotatoes held at 5 °C had significantly higher antioxidant activity than shredded cut sweetpotatoes. All treatments, except shredded sweetpotatoes held at 0 °C, had significantly higher total phenolic content and antioxidant activity after 4 and 8 days of storage. Minimally processed sweetpotatoes held at 5 °C accumulated more phenolic compounds and had a higher antioxidant activity than sweetpotatoes held at 0 °C. Chlorogenic acid followed by 3,5-dicaffeoylquinic acid were the predominant phenolic acids present in sweetpotatoes. The rate of increase in individual phenolic acid content with storage time was higher at 5 °C than at 0 °C. No tissue browning was observed in any of the cuts after 8 days of storage and the products were considered to be marketable.

Free access

Wilmer A. Barrera and David H. Picha

Sweetpotato is considered a good source of ascorbic acid (vitamin C) and certain B vitamins. These water-soluble vitamins (WSV) play essential roles in sustaining human health. Besides the root, sweetpotato vegetative tissues are also edible and considered high in nutritional value. Despite the availability of general reference values for sweetpotato WSV content in the root and leaves, little is known about the distribution of these vitamins in specific sweetpotato root and vegetative tissues. The objective of this study was to determine the ascorbic acid (AA), thiamin (B1), riboflavin (B2), and vitamin B6 content in a range of foliar tissues including buds, vines, young petioles, young leaves, mature petioles, and mature leaves and root tissues including the skin, cortex, and pith tissue at the proximal, distal, and center regions of the root. Among foliar tissues of ‘Beauregard’ sweetpotatoes, the AA content was highest in young leaves (108 to 139 mg/100 g fresh weight) and lowest in mature petioles (7.2 to 13.9 mg). No thiamin was detected in foliar tissue, whereas mature leaves contained the highest riboflavin and vitamin B6 content (0.22 to 0.43 mg and 0.52 to 0.58 mg, respectively). In root tissues of ‘Beauregard’ and ‘LA 07-146’ sweetpotatoes, the AA content was lower in the skin (1.9 to 5.6 mg and 2.54 to 3.82 mg, respectively). The AA content in the cortex and pith tissue at the proximal, distal, and center of the root was generally similar. The thiamin content was variable among root tissues, whereas the skin contained the highest riboflavin content and the lowest vitamin B6 content across root tissues of both cultivars. The results of this study confirmed earlier reports suggesting that sweetpotato leaves can be a good source of multiple WSV in the human diet.

Free access

Anthony Kilili, David H. Picha, and Yuehe Huang

`Beauregard' sweetpotatoes (Ipomoea batatas L. Lam) were stored under a continuous flow of 0%, 1%, 1.5%, 2%, 5%, 10%, or 21% O2 (balance N2) for 14 days. Respiration rate was significantly lower at 1.5%, 2%, 5%, and 10% O2 compared with 21% O2, while respiration at 0% and 1% O2 was higher than at 1.5%, 2%, 5%, and 10% O2. Respiration rate at 0% O2 remained high for several days after exposure to air while that at 1.5%, 2%, 5%, and 10% O2 increased rapidly to equal that of 21% O2. Ethanol and acetaldehyde accumulated rapidly at 0% and 1% O2 but were lower at the other O2 levels. Ethanol increased 16- and 4-fold after 14 days of storage at 0% and 1% O2, respectively, compared to 21% O2. In addition, acetaldehyde increased 11- and 8-fold at 0% and 1% O2 respectively, compared to 21% O2. Sucrose and total sugar concentration increased under low O2 concentration while reducing sugars (fructose and glucose) and pH decreased.

Free access

Y.H. Huang, David H. Picha, and Charles E. Johnson

The glucose-6-phosphate dehydrogenase (G-6-PDH) and glucose oxidase methods are commonly adapted for plant invertase assay. A disadvantage of the G-6-PDH assay is the relatively high cost of the coupling enzymes and cofactors. A disadvantage of the glucose oxidase method, which uses a glucose kit (Sigma, 510-A), is the presence of high activities of acid invertase and alkaline invertase in the PGO enzyme formula (peroxidase and glucose oxidase), which gives a falsely high invertase activity value. An alternative and inexpensive coupled assay was developed for enzymatic assay of plant invertases. In this assay, ADP produced from phosphorylation of glucose and fructose (hydrolysis products of invertases) is coupled to oxidation of NADH by the enzymes pyruvate kinase and lactate dehydrogenase in presence of phosphoenolpyruvate and NADH. This method was compared with the glucose-6-phosphate dehydrogenase method by using protein preparations derived from plant materials of three different species. Statistical analysis indicated that the alternative assay was similar in accuracy to the glucose-6-phosphate dehydrogenase method, with an advantage of reducing the cost from $0.85 to $0.35 per assay.

Free access

Paul W. Wilson, David H. Picha, and John M. Aselage

Changes in fructose, sucrose, and glucose were investigated in cured roots of `Beauregard', `Jewel' and `Travis' sweet potatoes stored at 15°C and 1.5°C for 8 wk. Samples of 6 roots each in triplicate were analyzed at 2 wk intervals. At each interval, samples were also heated for 5, 10, 20 or 40 min. at 100°C to determine changes in rate of maltose conversion. Roots stored at 15°C displayed gradual or no increase in sugars over the 8 wk. Roots stored at 1.5°C increased more rapidly in sugars, especially fructose, over the same time. `Jewel' had the greatest increase in the sugars when stored at 1.5°C. There was no consistent pattern of maltose conversion in roots stored at 15°C over the 8 wk storage time. Roots stored at 1.5°C displayed a reduction in ability to convert starch to maltose upon heating. Less maltose was produced with increasing time of storag at 1.5°C. `Beauregard' and `Jewel' changed the most, while `Travis' changed only slightly.