Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: David Campbell x
Clear All Modify Search

The COVID-19 pandemic altered the way many consumers and businesses transacted business. Concerning the green industry, many households began gardening and/or purchased more green industry products. As the pandemic ends and households begin to return to normal, green industry firms need to understand this new normal. Using an online national survey of households, we assessed which households were more likely to remain in the market after entering during the height of the pandemic (2020). Findings indicated that younger consumers (i.e., Millennials and younger individuals who were born in 1985 or after) were less likely to indicate they always garden (before the pandemic) but more likely to have started gardening during the pandemic and perceived that they would not continue to garden as states returned to normal (2021). This age group was also more likely to not have gardened in 2020, but they intended to garden in 2021. This finding shows a dichotomy in gardening preferences in this young age group. Further findings indicated that race, household income, number of children in the household, and the impact of the pandemic on the household also help explain the household’s decision to garden or not.

Open Access

The use of paper or nylon bags (fruit bagging) to surround tree fruit during development provides protection from a variety of pest-disease complexes for peach without yield reduction and different-colored bags have the potential to improve fruit quality based on findings from other crops. An experiment was conducted in 2019 at two locations in central Florida on peach [Prunus persica (L.) Batch] ‘TropicBeauty’ and ‘UFSun’ to analyze the impact of a commercially available white paper fruit bag combined with a photoselective insert. The insert reduced the amount of light outside the spectrum range of interest for blue (400–500 nm), green (500–600 nm), or red (>600 nm) wavebands, or decreased fluence rate with a neutral density black (>725 nm) insert. Relative to ambient, temperature inside all bagging treatments during the daytime hours was increased by 5.1 °C. During the same time, relative humidity was reduced by 10.1%, but calculations revealed that the water vapor pressure was elevated only for treatments that had a plastic colored (blue, green, or red) insert. An orthogonal contrast revealed that the elevated water vapor around the fruit in a colored bag increased the concentration of chlorophyll at harvest but had no effect on other quality parameters. Compared with unbagged fruit, red-bagged fruit were 1.8 times firmer and green-bagged fruit and had a lower peel chroma. White-bagged (without photoselective insert) fruit had similar nutrient concentrations for the peel, flesh, and pit when compared with unbagged fruit. When bags remained on the fruit until harvest, anthocyanin concentration in unbagged fruit peel was double the amount in white bags and 6-fold more than the bags with color inserts. Different-colored bagging treatments did not influence insect attraction or fruit quality parameters, such as fruit size, diameter, difference of absorbance (DA) index, total soluble solids (TSS), titratable acidity (TA), pH, peel lightness, peel hue, flesh lightness, flesh hue, or flesh chroma. Relative to full sun, the colored bag treatments allowed between 3.7% (black) and 17.4% (red) of the photosynthetically active radiation (PAR). Additional research is needed to determine if an increase in fluence rate at specific spectral wavelengths can affect the quality for peach grown in bags in the field.

Open Access

Mangifera indica L. germplasm can be classified by origin with the primary groups being cultivars selected from the centers of diversity for the species, India and Southeast Asia, and those selected in Florida and other tropical and subtropical locations. Accessions have also been classified by horticultural type: cultivars that produce monoembryonic seed vs. cultivars that produce polyembryonic seed. In this study, we used 25 microsatellite loci to estimate genetic diversity among 203 accessions. The 25 microsatellite loci had an average of 6.96 alleles per locus and an average PIC value of 0.552. The total propagation error in the collection, i.e., plants that had been incorrectly labeled or grafted, was estimated to be 6.13%. When compared by origin, the Florida cultivars were more closely related to Indian than to Southeast Asian cultivars. Unbiased gene diversity (Hnb) of 0.600 and 0.582 was found for Indian and Southeast Asian cultivars, respectively, and both were higher than Hnb among Florida cultivars (0.538). When compared by horticultural type, Hnb was higher among the polyembryonic types (0.596) than in the monoembryonic types (0.571). Parentage analysis of the Florida cultivars was accomplished using a multistage process based on introduction dates of cultivars into Florida and selection dates of Florida cultivars. Microsatellite marker evidence suggests that as few as four Indian cultivars, and the land race known as `Turpentine', were involved in the early cultivar selections. Florida may not represent a secondary center of diversity; however, the Florida group is a unique set of cultivars selected under similar conditions offering production stability in a wide range of environments.

Free access

Abstract

‘Monument’, a small, white dry bean (Phaseolus vulgaris L.) has been released to fulfill a need in western Nebraska for a cultivar maturing earlier than small, white ‘Aurora’, thereby reducing the risk of freeze damage in early fall frosts, and having an upright plant habit and less dense canopy, facilitating harvesting and reducing white mold disease (Sclerotinia sclerotiorum (Lib.) de Bary) (1, 2). The new cultivar is named in honor of the Scottsbluff National Monument, a historic site along the Oregon Trail, which is near the center of the Nebraska bean growing area in the North Platte Valley.

Open Access

Fruit firmness is a key quality component of tomatoes (Lycopersicon esculentum Mill.) for fresh-market and processed product applications. We characterized inheritance of firmness in processing tomato germplasm developed from interspecific L. esculentum Mill. × L. cheesmanii f. minor (Hook. f.) C.H. Mull. and intraspecific L. esculentum crosses. Although firmness is a key quality attribute of tomato, there is no standard method for measuring it. We measured the elastic portion of firmness by compression (compression Fmax) and puncture (puncture Fmax), and the viscoelastic portion by force-relaxation. The experimental design incorporated six genotypes in a complete 6 × 6 diallel. Compression Fmax and force measurements recorded at 0.5, 1.0, 5.0, and 10.0 seconds of relaxation were strongly related to each other, while relaxation parameters (A, B, C) describing relaxation curve shape were generally independent. Compression Fmax, relaxation curve parameter A, and puncture Fmax were significantly different among hybrids. Significant differences between Maryland and Ohio environments were evident for compression Fmax and relaxation curve parameter A. The patterns of firmness means differed among firmness measurement methods, namely for compression Fmax and puncture Fmax, indicating that they measure different aspects of tomato fruit firmness. Soft-fruited parents generally exerted a negative effect on compression Fmax, whereas firm-fruited parents most often exerted a positive effect on compression Fmax. The force required for fruit compression best approximated subjective assessment of fruit firmness. Force required for fruit puncture was subject to a significant environmental × hybrid influence in the genotypes evaluated. Shape of the force relaxation curve (i.e., parameter A) was not predictive of relative fruit firmness. General combining ability (GCA) and specific combining ability were both significant with GCA being the principal source of genetic variation. In agreement with combining ability estimates, narrow-sense heritability estimates for compression Fmax and puncture Fmax were relatively high.

Free access

Increased broccoli production in the eastern United States necessitates the exploration of novel concepts to improve weed management in this region. Currently, there are minimal selective postemergent herbicide options available for broccoli growers in the southeastern United States. Research was conducted to determine if bentazon, an effective nutsedge herbicide, could be used safely for broccoli when tank-mixed with chelated iron in both greenhouse and field settings. Initial greenhouse screens in Charleston, SC, demonstrated that when 224 g⋅ha−1 active ingredient of chelated iron was tank-mixed with bentazon, a reduction in injury occurred in most of the cultivars that were evaluated. However, based on injury ratings, yield parameters, and broccoli quality observed in the field, it appears that the applications of chelated iron yielded no positive effects. Furthermore, for some of the broccoli cultivars it appeared to exacerbate bentazon injury in the field.

Open Access

Since its introduction to North America in the 1990s, the invasive swede midge (Contarinia nasturtii) has become an important pest of cruciferous (Brassicaceae) vegetables in the northeast and Great Lakes regions of the United States and the Canadian provinces of Québec and Ontario. Swede midge reduces yield in cruciferous vegetables through larval feeding that distorts growth. Overlapping generations, cryptic larval feeding, and lack of effective biopesticides pose challenges for managing swede midge effectively using current tools. In 2018, we distributed an online survey for commercial vegetable growers in the United States and Canada to measure farm-level economic impacts of swede midge and grower perspectives on new management strategies for this pest. Growers reported losing $3808 US ($4890 Canadian) on average per acre per year due to swede midge–related vegetable crop losses. Both organic and conventional growers expressed an interest in paying more for nonchemical swede midge management vs. insecticides and were interested in trying new management strategies, particularly biological control.

Open Access

Fruit bagging is an acceptable cultural practice for organic production that provides a physical barrier to protect fruit. It can reduce pest and pathogen injury for a variety of fruit crops, but quality attributes have been inconsistent for peach [Prunus persica (L.) Batsch] and other bagged fruit. A 2-year experiment on a U.S. Department of Agriculture (USDA) organic-certified peach orchard in central Florida was conducted to analyze the effects of a commercially available paper bag designed for fruit protection and cardinal quadrant (north, south, east, and west sides) of the tree canopy on low-chill peach ‘TropicBeauty’ fruit quality. Protective bags appeared to delay fruit maturity. Flesh firmness and chlorophyll concentration of bagged fruit were 31% and 27% greater than unbagged fruit, respectively. Bagged fruit were protected as demonstrated with a reduction in mechanical injury by 95%, fruit fly injury by 450%, and scab-like lesions by 810%. Bagging reduced fruit brown rot (Monilinia fructicola) at harvest and 7 days after harvest; unbagged fruit were 2 and 3.5 times more likely to have rot at harvest and 7 days after harvest, respectively. Fruit bags did not affect yield, fruit size, total soluble solids, titratable acidity, pH, peel lightness, peel hue angle, or flesh color. Overall, canopy cardinal quadrant location had minimal effect on fruit quality or fruit injury. These results demonstrate that bagging peach fruit protects against various pests and diseases but has minimal effects on fruit quality. Broad adoption of this technology is highly dependent on available labor, market demands, and profitability but may be suitable for producers using direct-to-consumer market channels.

Open Access