Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: David B. Langston x
Clear All Modify Search
Free access

William Terry Kelley and David B. Langston Jr.

The phase out of methyl bromide has precipitated a need to reduce usage of the all purpose fumigant. Reduction in methyl bromide use can extend the life of existing stocks and make it more likely to continue critical use exemption for future production. Traditional widths for plastic mulch covered beds in Georgia ranges from 32 to 36 inches. By reducing bed top widths, it could be possible to reduce the amount of methyl bromide applied by as much as 60%. The objectives of this work were to evaluate the effects of narrower bed tops and lower rates of methyl bromide on pepper and cantaloupe growth and yield. Bed top widths of 36, 30, and 24 inches were each tested with broadcast rates of 400 and 300 lb/acre of both 67:33 and 50:50 methyl bromide-chloropicrin at Tifton, GA in the fall of 2005. Bed widths were the main plot and methyl bromide rates the sub plot. Plots were 20 feet long with two rows of pepper planted per bed with 12 inches between plants and one row of cantaloupe planted per bed with two feet between plants. All beds were on 6-ft centers and fertilizer rates were constant across plots within a crop. There were four replications. Otherwise normal cultural practices were employed. Crops were harvested at maturity and data collected on yield and plant growth. Pepper yields were depressed by early cold weather. The 24-inch bed tops produced significantly lower yields of extra large, large and total fruit, but had greater top dry weight and root fresh weight than the 36-inch beds. There were no differences found among methyl bromide rates for cantaloupe or for pepper except extra large fruit were greater at the highest rate compared to the lowest. There were no differences among bed top widths for cantaloupe yield or plant growth.

Free access

George E. Boyhan, David B. Langston, Albert C. Purvis and C. Randell Hill

Five different statistical methods were used to estimate optimum plot size and three different methods were used to estimate optimum number of replications with short-day onions (Allium cepa L.) for yield, seedstem formation (bolting), purple blotch and/or Stemphylium (PB/S), botrytis leaf blight (BLB), and bulb doubling with a basic plot size unit of 1.5 × 1.8 m (length × width). Methods included Bartlett's test for homogeneity of variance, computed lsd values, maximum curvature of coefficient of variation plotted against plot size, Hatheway's method for a true mean difference, and Cochran and Cox's method for detecting a percent mean difference. Bartlett's chi-square was better at determining optimum plot size with transformed count and percent data compared with yield data in these experiments. Optimum plot size for yield of five basic units (7.5 m length) and four replications is indicated using computed lsd values where the lsd is <5% of the average for that plot size, which was the case in both years of this study. Based on all the methods used for yield, a plot size of four to five basic units and three to five replications is appropriate. For seedstems using computed lsd values, an optimum plot size of four basic units (6 m length) and two replications is indicated. For PB/S two basic units (3 m length) plot size with four replications is indicated by computed lsd values. For BLB a plot size of four basic units (6 m length) and three replications is optimum based on computed lsd values. Optimum plot size and number of replications for estimating bulb doubling was four basic units (6 m length) and two replications with `Southern Belle', a cultivar with a high incidence of doubling using computed lsd values. With `Sweet Vidalia', a cultivar with low incidence of bulb doubling, a plot size of four basic units (6 m length) and five replications is recommended by computed lsd values. Visualizing maximum curvature between coefficient of variation and plot size suggests plot sizes of seven to eight basic units (10.5 to 12 m length) for yield, 10 basic units (15 m length) for seedstems, five basic units (7.5 m length) for PB/S and BLB, five basic units (7.5 m length) for `Southern Belle' doubling, and 10 basic units (15 m length) for `Sweet Vidalia' doubling. A number of plot size-replication combinations were optimum for the parameters tested with Hatheway's and Cochran and Cox's methods. Cochran and Cox's method generally indicated a smaller plot size and number of replications compared to Hatheway's method regardless of the parameter under consideration. Overall, both Hatheway's method and computed lsd values appear to give reasonable results regardless of data (i.e., yield, seedstems, diseases etc.) Finally, it should be noted that the size of the initial basic unit will have a strong influence on the appropriate plot size.

Free access

Judy A. Thies, Richard F. Davis, John D. Mueller, Richard L. Fery, David B. Langston and Gilbert Miller

Root-knot nematode-resistant `Charleston Belle' bell pepper (Capsicum annuum L. var. annuum) and metam sodium treatment were evaluated for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall-cropped cucumber (Cucumis sativus L.). `Charleston Belle' and its susceptible recurrent parent, `Keystone Resistant Giant', were planted as spring crops at Blackville, S.C., and Tifton, Ga. `Charleston Belle' exhibited high resistance and `Keystone Resistant Giant' was susceptible at both locations. After termination of the bell pepper crop, one-half of the plots were treated with metam sodium delivered through the drip irrigation system. Cucumber yields and numbers of fruit were highest for cucumber grown in plots treated with metam sodium following either `Charleston Belle' or `Keystone Resistant Giant'; however, root gall severity and numbers of M. incognita eggs in the roots were lowest for cucumber grown in plots treated with metam sodium following `Charleston Belle'. Conversely, root gall severity and nematode reproduction were highest for cucumber grown in plots following `Keystone Resistant Giant' without metam sodium treatment. Application of metam sodium through the drip irrigation system following a spring crop of root-knot nematode-resistant bell pepper should reduce severity of root galling and reproduction of M. incognita as well as increase fruit yield of fall-cropped cucumber.

Full access

W. Carroll Johnson III, David B. Langston Jr., Daniel D. MacLean, F. Hunt Sanders Jr., Reid L. Torrance and Jerry W. Davis

Field experiments were conducted from 2008 through 2010 near Lyons, GA, to develop integrated weed management systems for organic Vidalia® sweet onion (Allium cepa) production. Treatments were a factorial arrangement of summer solarization, cultivation with a tine weeder, and a clove oil herbicide. Plots were solarized with clear plastic mulch during the summer fallow period before transplanting onion. Cultivation treatments were twice at 2-week intervals, four times at 2-week intervals, and a noncultivated control. Herbicide treatments were clove oil plus vinegar, clove oil plus an emulsified petroleum oil (EPO) insecticide used as an adjuvant, and a nontreated control. ‘Savannah Sweet’ onions were transplanted in early-December each year, with cultivation and herbicide applications events occurring the following January and February. Onions were harvested the following spring. In addition to yield measurement, a subsample of harvested onion was stored in a controlled atmospheric (CA) storage facility to evaluate treatment effects on diseases of stored onion. Summer fallow solarization did not control the cool-season weeds present in these trials. Cultivating transplanted onion with a tine weeder effectively managed cutleaf eveningprimrose (Oenothera laciniata) and swinecress (Coronopus didymus) and improved onion yields in 2 of 3 years. There was little difference in overall performance between two cultivations and four cultivations with the tine weeder. The 1 year of marginal weed control with the tine weeder was due to persistently wet soils during winter months that inhibited optimum performance of the implement. Clove oil, combined with vinegar or an EPO insecticide, provided marginal weed control and had no effect on onion yield. Diseases of stored onion were unaffected by any of the treatment combinations, although overall incidence of diseases of stored onion was higher in 2010 compared with other years. This corresponds with the 1 year of marginal weed control with the tine weeder, suggesting that the presence of weeds may be a factor related to disease incidence during storage.

Open access

J. Harrison Ferebee IV, Charles W. Cahoon, Michael L. Flessner, David B. Langston, Ramon Arancibia, Thomas E. Hines, Hunter B. Blake and M. Carter Askew

Chemical desiccants are commonly used to regulate tuber size, strengthen skin, and facilitate harvest for potato (Solanum tuberosum) production. Glufosinate is labeled for potato vine desiccation; however, limited data are available. Saflufenacil, a protoporphyrinogen oxidase–inhibiting herbicide, is an effective desiccant in other crops. Field research was conducted to evaluate glufosinate and saflufenacil as desiccants applied to ‘Dark Red Norland’ potato. Desiccants consisted of diquat, glufosinate, saflufenacil, glufosinate plus carfentrazone, and glufosinate plus saflufenacil applied at three timings, DESIC-1, DESIC-2, and DESIC-3, when size B potatoes averaged 43%, 31%, and 17% of total potato weight. Potato vine desiccation was more difficult at DESIC-1 and DESIC-2 because of immature vines. Diquat was the most effective desiccant 7 days after treatment (DAT), desiccating potato vines 88% at DESIC-1 7 DAT. Glufosinate alone desiccated potato vines 65% at the same timing; however, carfentrazone and saflufenacil added to glufosinate increased vine desiccation 8% and 16% compared with glufosinate alone, respectively. Vine desiccation by all treatments ranged 99% to 100% at 14 DAT. Desiccant and timing effects on skin set were determined using a torque meter before harvest. Skin set resulting from all desiccants and timings ranged between 1.88 and 2 lb-inch, and no significant differences were observed. No significant differences in yield were noted among desiccants. This research indicates that glufosinate and saflufenacil are suitable alternatives to diquat for potato vine desiccation; however, safety of saflufenacil applied to potatoes before harvest has not been determined.