Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: David A. Zuberer x
Arbuscular mycorhizal fungi (AMF) have been used in phytoremediation and can increase tolerance and growth of plants in contaminated environments. However, little is known about the influence AMF on plant growth to organic contaminants in soils. A greenhouse experiment was conducted to study the response of seedlings of annual ryegrass (Lolium perenne L.) var. Passerel Plus inoculated with Glomus intraradices Schenck & Smith in soil contaminated with sweet Arabian median crude oil. Inoculated (AMF) and non-inoculated (Non-AMF) plants were established in an pasteurized and artificially contaminated sandy loam soil with 0; 3000; 15,000; or 45,000 mg of petroleum kg-1 soil (n = 20). Plants were inoculated with 500 spores of G. intraradices (Mycorise® ASP, PremierTech Biotechnologies, Canada). After 90 days, plant growth of AMF or Non-AMF plants, was drastically affected at all petroleum concentrations. However, G. intraradices enhanced plant growth, chlorophyll content, and gas exchange of plants grown at 3,000 mg kg-1 compared to Non-AMF plants. Total leaf area, chlorophyll, and net photosynthesis were also higher (+380%, +63%, and +81%, respectively) at this concentration. Water use efficiency (net photosynthesis/stomatal conductance) of AMF-plants was three times greater than Non-AMF at 3,000 mg·kg-1. At concentrations of 15,000 and 45,000 mg kg-1 AMF did not have effect, but colonization was observed (11.8% and 18.6%, respectively). These values of colonization were significantly lower than those observed in AMF-plants at 0 (42.5%) and 3,000 mg·kg-1 (55.6%). Studies are currently being conducted to understand the physiological role of AMF on plants exposed to organic contaminants.
A phytoremediation study in a 3 × 3 × 2 factorial experimental design was conducted to determine the effect of Glomus intraradices (AMF) inoculation and inorganic fertilization on the growth and development of Lolium multiflorum cv. Passarel Plus, and on the degradation of total petroleum hydrocarbons (TPH). The 80-day study was done with pots containing sandy soil. Seedlings of L. multiflorum were transplanted to uncontaminated or soil contaminated with Arabian crude oil (ACO) at concentrations of 3000 and 15,000 mg·kg-1. Half of the seedlings were inoculated with 500 spores of AMF. Plants were fertilized with Long Ashton Nutrient Solution (LANS) at 0.5×, 1.0×, or 2.0× strength, modified to supply 30 μg·mL-1 P to maximize the AMF establishment. Total plant dry weight and leaf antioxidant activity were reduced by ACO when compared to control plants. The LANS fertilization enhanced plant growth under ACO-contamination, and allowed similar antioxidant activity in plants exposed to 15,000 mg·kg-1. Soil rhizosphere respiration was increased by LANS, particularly with 15,000 mg·kg-1 ACO. AMF inoculation did not enhance plant growth, antioxidant activity, or microbial respiration. The average root colonization was around 30% in contaminated and uncontaminated rhizospheres, indicating that the tolerance of AMF symbiosis to ACO. Greater TPH degradation was achieved in non-AMF plants at 3000 mg·kg-1 ACO in combination with 0.5× LANS. LANS-fertilization with 1.0× or 2.0× did not enhance TPH-degradation when compared to 0.5× LANS.
Compost application to turfgrasses may contribute to accumulation of macronutrients in soil and eventually pose leaching and runoff hazards. The objectives of this study were to determine the influence of compost on soil-dissolved organic C (DOC) and accumulation of NH4OAc-EDTA-extractable and water-soluble nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) in St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] turf. Dissolved organic C increased from 3 to 29 months after application for unamended and compost-amended soils, indicating contribution from decomposition of both compost and St. Augustinegrass residues. Dissolved organic C was 75%, 78%, and 101% greater 29 months after application of 0, 80, and 160 mg·ha−1 of compost, respectively, than before application. Dissolved organic C and macronutrients exhibited considerable seasonal variation, because DOC and EDTA-extractable P, Ca, Mg, and S increased after compost application, whereas NO3 declined. Water-soluble K, Ca, and Mg declined, whereas P and S increased from 0 to 29 months. Similar seasonal changes in macronutrient concentrations occurred for unamended and compost-amended soil, indicating that composts, in addition to turfgrass residues, influenced DOC and macronutrient dynamics. Long-term nutrient accumulation occurred in compost-amended turfgrass, but seasonal dynamics were more related to the growth stage of turfgrass than compost. Formation of DOC-cation complexes appeared to contribute to macronutrient mobility, because decreases in DOC and nutrient concentrations occurred during turfgrass dormancy in winter and after high precipitation levels, indicating the potential for leaching of DOC-associated nutrients from soil.
Application of organic amendments can increase dissolved organic C (DOC) concentrations, which may influence movement of nutrients and heavy metals in soils. The objectives of this study were to investigate the influence of compost sources and application rates on concentrations of soil DOC, NO3-N, and extractable P over 29 months after a one-time application of compost to bermudagrass [Cynodon dactylon (L.) Pers.] turf. Few differences were evident between compost sources for soil total organic C (TOC), DOC, and NO3-N. However, the initial P content of compost sources significantly influenced soil extractable P. Increasing the rate of compost application increased soil TOC initially, but levels remained fairly stable over time. In contrast, DOC continued to increase from 3 to 29 months after application, suggesting that compost mineralization and growth of bermudagrass contributed to DOC dynamics in soil. Dissolved organic C was 98%, 128%, 145%, 175%, and 179% greater 29 months after application of 0, 40, 80, 120, and 160 Mg compost/ha, respectively, than before application. Rate of compost application had less effect on DOC than TOC, as DOC concentrations appeared controlled in part by bermudagrass growth patterns. Soil NO3-N was generally unaffected by compost application rate, as NO3-N decreased similarly for unamended soil and all compost treatments. Soil extractable P initially increased after compost application, but increasing the application rate generally did not increase P from 3 to 29 months. Seasonal or cyclical patterns of TOC, DOC, and extractable P were observed, as significantly lower levels of these parameters were observed in dormant stages of bermudagrass growth during cooler months.