Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Danielle Donnelly x
Clear All Modify Search

Labeled (`“C) compounds were recovered from tissue disks taken from 14CO2-fed leaves of l-year-old greenhouse-grown plants and l-month-old ex vitro transplants of red raspberry (Rubus idaeus L.) by hot (boiling in 80% ethanol immediately after 14C exposure), delayed-hot (boiling in 80% ethanol after a 2- to 3-day ethanol soak), and room-temperature (RT) (2-to 3-day soak in 80% ethanol) extraction methods. The RT extraction method was simple but as effective for extracting 14C-labeled compounds from red raspberry leaf tissues as hot and delayed-hot extraction methods.

Free access

Leachates were produced by washing Hydra-fill, a polyurethane ester foam, with water. These leachates decreased radish (Raphanus sativus L.) and tomato (Lycopersicon esculenturn Mill.) seed germination and were phytotoxic to seedlings. Washing the foam for as little as 5 minutes (compared to not washing) before collecting the leachate significantly decreased the mean seed germination time by 0.6 to 1 day. Rinsing the foam with ethanol before collecting the leachate was detrimental to germination. When used as a potting medium component, the foam reduced radish shoot and root dry weights compared to potting media without foam. Washing the foam with tap water before use resulted in increased radish shoot and root dry weights. Hydra-fill generally reduced plant performance when included in potting media. However, radish grew well in fresh 25% Hydra-fill (raw or washed) mixed with loam.

Free access

Abstract

A simple, rapid clearing and staining method was developed using intact in vitro blackberry (Rubus spp. ‘Silvan’) and strawberry (Fragaria × ananassa Duch. ‘Totem’) plantlets and sections of greenhouse-grown ‘Silvan’ and ‘Totem’ leaves. The clearing method involved three steps: 1) autoclaving in 80% ethanol to remove the chlorophyll, which took 15 to 20 min for plantlets and 25 and 35 min for greenhouse-grown ‘Silvan’ and ‘Totem’, respectively; 2) dissolution of the protoplasm using 5% NaOH at 80°C, which took 20 min for plantlets and 35 and 40 min for greenhouse-grown ‘Silvan’ and ‘Totem’ respectively; 3) post-alkali treatment with 75% bleach (4.5% NaClO). For tissue-cultured plantlets this took 5 to 10 min at room temperature, but greenhouse-grown material required 35 to 40 min at 55°. Aqueous safranin (10 mg·liter−1) was used for staining. This method gave consistently good results and required a maximum of 2 hr for completion.

Open Access

Mechanically induced stress (shaking stress) applied during shoot multiplication (Stage II) or rooting (Stage III) of micropropagated `Queen Elizabeth' rose was evaluated to determine its effects on in vitro hardening. Shaking during Stage II did not alter the growth responses of the shoots before transfer to Stage III. Shaking during Stage III, at 150 rpm for 15 min daily for 2 weeks, only caused a reduction in leaf dry weights before transfer to soil. Automated shaking stress during Stages II or III did not apparently promote hardening of cultured plants or improve their ex vitro performance.

Free access

Isoenzyme staining was used to characterize 55 of 78 raspberry cultivars (Rubus idaeus L., R. × neglectus Peck, and R. occidentalis L.). Six enzymes were needed to achieve this characterization: isocitrate dehydrogenase, malate dehydrogenase, phosphoglucoisomerase, phosphoglucomutase, shikimic acid dehydrogenase, arid triose phosphate isomerase. The 23 cultivars that were not uniquely characterized were grouped into eight groups of two and two groups of three and four. Two of these groups comprised black raspberry cultivars, all of which were similar isozymically. Isoenzymes could not distinguish between the cultivar Willamette and a spine-free mutant of the cultivar. Analysis of cultivars obtained from several sources revealed that raspberry cultivar mislabeling exists but is not very prevalent. Regular isoenzyme analysis of raspberry cultivars held by germplasm repositories, certified and other propagators, and breeders is both feasible and advisable for early detection of cultivar mislabeling.

Free access

Micropropagated `Festival' red raspberry (Rubus idaeus L.) shoots were rooted in specially constructed plexiglass chambers in ambient (340 ± 20 ppm) or enriched (1500 ±50 ppm) CO2 conditions on a medium containing 0, 10, 20, or 30 g sucrose/liter. Plantlet growth and leaf 14CO2 fixation rates were evaluated before and 4 weeks after ex vitro transplantation. In vitro CO2 enrichment promoted in vitro hardening; it increased root count and length, plantlet fresh weight, and photosynthetic capacity but did not affect other variables such as plantlet height, dry weight, or leaf count and area. No residual effects of in vitro CO2 enrichment were observed on 4-week-old transplants. Sucrose in the medium promoted plantlet growth but depressed photosynthesis and reduced in vitro hardening. Photoautotrophic plantlets were obtained on sucrose-free rooting medium under ambient and enriched CO2 conditions and they performed better ex vitro than mixotrophi plantlets grown with sucrose. Root hairs were more abundant and longer on root tips of photoautotrophic plantlets than on mixotrophic plantlets. The maximum CO2 uptake rate of plantlet leaves was 52% that of greenhouse control plant leaves. This did not change in the persistent leaves up to 4 weeks after ex vitro transplantation. The photosynthetic ability of persistent and new leaves of 4-week-old ex vitro transplants related neither to in vitro CO2 nor medium sucrose concentration. Consecutive new leaves of transplants took up more CO2 than persistent leaves. The third new leaf of transplants had photosynthetic rates up to 90% that of greenhouse control plant leaves. These results indicate that in vitro CO2 enrichment was beneficial to in vitro hardening and that sucrose may be reduced substantially or eliminated from red raspberry rooting medium when CO2 enrichment is used.

Free access

The inheritance of five isoenzymes was studied in red and purple raspberry F1 progenies (Rubus idaeus L. and Rubus × neglectus Peck). Isocitrate dehydrogenase (IDH; EC 1.1.1.42) was a dimeric enzyme present in the cytosol and coded for by one locus (Idh-1). Three of the four crosses analyzed at this locus had deviations from expected ratios, possibly caused by its linkage to a recessive lethal gene. Malate dehydrogenase (MDH; EC 1.1.1.37), phosphoglucoisomerase (PGI; EC 5.3.1.9), and triose phosphate isomerase (TPI; EC 5.3.1.1) were dimeric enzymes with two loci. Each of these three enzymes was present in an organelle and in the cytosol for locus 1 and 2, respectively. Phosphoglucomutase (PGM; EC 2.7.5.1) was monomeric with two loci, Pgm-1 and Pgm-2, located in an organelle and the cytosol, respectively. Each allele at Pgm-1 resulted in the formation of two bands. Although most progenies analyzed supported Mendelian inheritance of polymorphic loci (except for Idh-1), there was a higher than expected number of aberrant segregation ratios observed (18.4%). Analysis of 85 pairs of jointly segregating loci revealed a possible linkage group consisting of Mdh-2, Tpi-2, and Pgm-1.

Free access

Micropropagation of strawberries is an extremely effective tool to rid strawberry plants of Colletotrichum infections. The continued health of these plants depends on a vigorous sanitation program throughout the nursery system in North America. Propagating healthy strawberry plants requires a series of steps: plants are micropropagated, virus-tested, screened for fungal and bacterial pathogens, and finally grown under strict guidelines for two growing seasons in propagator's fields. In the propagator's fields, the plants are inspected for visual symptoms of diseases and checked for trueness-to-type. This paper reviews the protocols used to develop specific pathogen-tested strawberry plants in Ontario and, where appropriate, discusses alternate techniques.

Free access