Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Daniele Bassi x
Clear All Modify Search
Authors: and

To learn why embryos of early ripening stone fruits abort or fail to germinate, the growth and nutrition of developing seeds of `Independence' nectarine and `Fay Elberta' peach (Prunus persica, Batsch.) were compared. Seeds were collected at weekly intervals, beginning 2 months after full bloom until the fruits were ripe. Fruit diameter, seed and embryo lengths, and fresh weights of nucellus and endosperm were recorded. Parts of the seeds were analyzed for soluble carbohydrates, fats, and total N. At the same phonological stages of fruit development, concentrations of these seed fractions were nearly equal for both cultivars. Percentage composition of all fractions varied with time, but increased on a per-seed basis. Sucrose was the major soluble carbohydrate in embryos of both cultivars. Nitrogen content of the embryos, on a percent dry matter basis, gradually decreased from the 12th week after full bloom to harvest.

Free access

A study was conducted to determine genetic control of the columnar or pillar (PI) growth habit, and to evaluate the effects of interactions of various genes that influence peach [Prunus persica (L.) Batsch (Peach Group)] growth habit. The PI habit (brbr) examined in this study was inherited as a monogenic trait expressing incomplete dominance. The heterozygous Brbr derived from crosses between standard (ST) and PI genotypes was recognized as an upright (UP) tree with narrower branch angles than ST trees but wider than PI trees. The combination of brbr and brachytic dwarf (DW) (dwdw) produced dwarf-pillar (DWPI) trees. The effects of the heterozygous Brbr in combination with dw and/or compact (CT) (Ct) could not be recognized by visual observation. Compact pillar (CTPI) trees resulted from the expression of Ct_ brbr. These trees were distinguished from globe-shaped (GL) trees (Ct_Brbr) by the more upright growth habit of the CTPI trees. This genetic study highlights the genetic plasticity of tree growth habit in peach. The investigation of novel growth habits extends our concept of the peach tree. Some growth habits such as PI may have commercial potential for high-density peach production systems. Others, such as DWPI and CTPI may have potential as ornamentals.

Free access

‘Big Top’ nectarine [Prunus persica (L.) Batsch] has appreciable keeping quality because it resembles, at ripening, the stony hard (SH) peach (P. persica) in firmness and crispness but melts at a slow speed at full ripening. We have characterized the postharvest behavior of ‘Big Top’ fruit, treated or not with ethylene for 5 days after harvest (DAH), and compared it with that of a SH peach (‘Ghiaccio’). Pp-ACS1 expression, ethylene evolution, endo-polygalacturonase (endo-PG) production, and softening were evaluated and compared with those of the physiologically ripe melting flesh (M) cultivar Bolero. Like ‘Bolero’, ‘Big Top’ fruit expressed Pp-ACS1 and evolved ethylene but with a 5-day delay. Pp-endo-PG expression, production of an active endo-PG, and fruit melting showed a parallel behavior; ethylene treatment enhanced all these features. In SH ‘Ghiaccio’ Pp-ACS1 expression, ethylene evolution, endo-PG production, and softening were absent during the first 5 DAH in air. ‘Ghiaccio’ neither expressed Pp-ACS1 nor evolved ethylene even after ethylene treatment but responded by accumulating Pp-endo-PG transcripts and an active endo-PG protein, with flesh melting. A ‘Big Top’ Pp-endo-PG clone showed several single nucleotide (SNP) and insertion-deletion (InDel) polymorphisms in comparison with the M Pp-endo-PG clone of ‘Bolero’ and substantial similarity with the Pp-endo-PG clone of ‘Ghiaccio’. In ‘Big Top’, we identified a peculiar SNP (bp 348) and InDels shared with ‘Ghiaccio’, possibly suitable for discriminating among different genotypes. Overall, the data confirm the pivotal role of ethylene in the regulation of endo-PG production and in the determination of peach flesh texture and support the evidence that ‘Big Top’ could be classified as a melting (slow-melting) phenotype.

Free access