Search Results
Several cultivars of nonharvested watermelon (Citrullus lanatus) pollenizers were compared for staminate flower production in field tests and disease reaction to fusarium wilt [Fusarium oxysporum f. sp. Niveum (FON)] in both greenhouse and field tests. Differences were observed in staminate flower counts and fusarium wilt reactions in both years of field evaluations and to fusarium wilt among cultivars evaluated in the greenhouse. ‘SP-1’, ‘Sidekick’, and ‘5WDL 6146’ were the cultivars with high staminate flower counts in the field both years. These cultivars also were among the most resistant to fusarium wilt in both years of field tests. Significant correlations occurred between the rankings of the cultivar’s fusarium wilt reactions in both the two field and three greenhouse experiments, indicating a high degree of correlation between field and greenhouse tests.
A 2-year field study was conducted to determine the influence of planting method, i.e., transplanting or direct seeding, black plastic mulch, and soil fumigation on the vine growth, yield, and root structure of diploid hybrid watermelon. The experiment was a split-plot design with fumigation as the main plot and there were four replications. Methyl bromide (337 L·ha−1) was applied to the soil, which was then tarped. Black plastic mulch, 0.61 m wide × 2 mil (Visqueen 4020™) was applied to appropriate rows. Vine growth was measured during the season and yield was determined by the number and weight of fruit from each treatment. After fruit harvest, plant roots were excavated so that root structure was maintained with minimal damage and roots were photographed. Root systems were scored for tap root dominance and overall root distribution. Direct-seeded watermelon had more vine growth and higher yields in both years than transplanted watermelon. The advantage of direct seeding was likely the result of the growth and root expansion that occurred for these plants while the transplants were still in the greenhouse. Direct-seeded plants also displayed greater tap root dominance in each year than transplanted watermelon. Roots of both direct-seeded plants and transplants had a greater range in size distribution in both years under plastic mulch than those grown on bare ground. In late-planted watermelon, direct-seeded plants had more favorable vine growth and yield without the aberrant roots systems produced by transplants.
Phytophthora blight has become one of the most serious threats to the vegetable industry. Managing this disease is challenging, because the oomycete pathogen responsible, Phytophthora capsici, can move rapidly through crop fields, has a wide host range, is resistant to many commonly used fungicides, and produces resilient spores that can survive in soil for up to 10 years. Recent studies have demonstrated that biochar amendments can suppress infection by many soil-borne pathogens—indicating that these amendments could have the potential to help control phytophthora blight. In this study, greenhouse trials were conducted to determine whether two commercially available biochar amendments could suppress P. capsici infection in sweet bell pepper (Capsicum annuum) using three naturally infested field soils. Soil biological and chemical assays were conducted to evaluate whether potential changes induced by biochar amendments were correlated with suppressive activity. Amending soil with a biochar product that included a proprietary mix of beneficial microorganisms and enriched substrates resulted in lower soil P. capsici abundance in all soils, and lower percent root infection in two of the soils tested. This product also resulted in higher soil pH, and lower soil nitrogen availability and leaf chlorophyll content. The other biochar product did not suppress P. capsici, and had few effects on soil chemical and biological properties. Results of this study indicate that some commercially available biochar amendments have the potential to help mediate phytophthora blight, but further trials are needed to confirm that suppressive effects will be observed in field trials. Additional research is also recommended to identify the mechanisms regulating biochar-mediated suppression of phytophthora blight to develop products that can reliably suppress soil-borne diseases in the field.
Locally produced strawberries (Fragaria ×ananassa) have outstanding market potential. But strawberry production has been decreasing in the north-central United States, partly because of high production risks associated with the traditional matted-row system. The annual plasticulture system attracts attention but its low yield limits the wide adoption of the production system in the north-central United States. High tunnels are widely used to extend strawberry seasons worldwide, but the system was not fully explored in the United States. Although the benefits of growing strawberries in high tunnels were recognized, information on suitable strawberry cultivars specific for the fall-planted high tunnel production system is limited. A wide range of short-day and day-neutral strawberry cultivars, including recently released cultivars, were evaluated in the fall-planted annual plasticulture high tunnel systems for three seasons. Averaged among cultivars, the marketable yields were 1.96, 1.35, and 2.27 lb/plant for 2015–16, 2019–20, and 2020–21 seasons, respectively. The combined use of high tunnels and floating rowcovers created favorable microclimate conditions that led to high yields. Florida Radiance, San Andreas, Chandler, and Rocco were the top-yielding cultivars. Besides Chandler, the other top-yielding cultivars entered peak harvest in the second half of April. Harvests ended at the end of May or early June. All cultivars reached the US Department of Agriculture standard for total soluble solids in all three seasons, although Camino Real, FL Radiance, and Sweet Sensation consistently had relatively lower sugar content. Considering a warm-season crop could grow in high tunnels before or after strawberry, a diversified cropping system involving strawberry and other vegetables is highly valuable for high tunnel production systems in the north-central United States. This study did not compare cultivars’ resistance to diseases, but it should be a critical factor in selecting cultivars. Future studies are also warranted to evaluate the effects of incorporating soil treatments and cover cropping for suppressing diseases in the soil-based high tunnel system. Sustainable management strategies to control two-spotted spider mites (Tetranychus urticae) are also crucial in successfully using the system in the north-central United States.
Bacterial wilt of cucurbits, incited by Erwinia tracheiphila (E. F. Smith) and vectored by the striped cucumber beetle [Acalymma vittatum (F.)] (SCB), is a serious disease of muskmelon (Cucumis melo L.). Cultivars differ in attractiveness to SCB and susceptibility to bacterial wilt, but no cultivar resistant to bacterial wilt has been introduced. In 2015 and 2016, replicated field plots of eight cultivars were grown at Lafayette, Wanatah, and Vincennes, IN, to identify differences in attractiveness to SCB and susceptibility to bacterial wilt. ‘Savor’ had significantly more beetle activity than ‘Hales Best’, ‘Superstar’, and ‘Aphrodite’ in three of six site-years, and more than ‘Diplomat’, ‘Dream Dew’, ‘Athena’, and ‘Wrangler’ in two site-years. Beetle activity for ‘Athena’, ‘Superstar’, and ‘Wrangler’ did not differ significantly from ‘Aphrodite’ for any site-year. Bacterial wilt severity was significantly greater for ‘Diplomat’ and ‘Dream Dew’ than for other cultivars in four site-years. ‘Superstar’ had the least disease in five site-years, but significantly less than ‘Aphrodite’, ‘Athena’, and ‘Hales Best’ in only one site-year. At one site, additional plots of each cultivar were populated with five SCBs per plant, and rowcovers were applied to keep the SCBs near the plants for 3 weeks. This resulted in similar beetle activity on all cultivars, but most disease in ‘Dream Dew’ and least in ‘Superstar’ and ‘Athena’. Marketable yield was generally highest for ‘Aphrodite’, ‘Superstar’, and ‘Athena’ when plants were exposed to natural beetle populations. Overall, ‘Savor’ and ‘Diplomat’ were the most attractive to beetles, and ‘Diplomat’ and ‘Dream Dew’ were the most susceptible to bacterial wilt. ‘Aphrodite’, ‘Athena’, and ‘Superstar’ were less attractive to beetles and showed more tolerance to bacterial wilt in both 2015 and 2016.
Seedless cucumber (Cucumis sativus) is a popular and high-value crop found in many local food markets. Worldwide, it is the third most important high tunnel crop after tomato (Solanum lycopersicum) and pepper (Capsicum annuum). One challenge of growing seedless cucumbers in high tunnels is low soil temperatures in the early season that suppress plant growth even when air temperatures would be adequate. Grafting cucumbers to enhance crop tolerance to suboptimal temperature stresses has been widely used in Asian countries. However, little information is available in the United States about graft compatibility, cold hardiness, and seasonal extension potential of growing grafted seedless cucumbers in high tunnels. In this study, we tested the effects of grafting with two winter squash (Cucurbita moschata) rootstocks (‘Titan’ and ‘Marvel’) on vegetative growth and yield of three seedless cucumbers (‘Excelsior’ pickling cucumber, ‘Socrates’ Beit Alpha cucumber, and ‘Taurus’ long-type cucumber) in the spring seasons of 2016 and 2017 in high tunnels located in U.S. Department of Agriculture (USDA) hardiness zone 6. Nongrafted plants were included as controls. All grafted plants survived the suboptimal temperature stress during transplant period, whereas 59% of nongrafted plants died in the 2016 season. Irrespective of rootstock and cucumber cultivar, vine growth rates of nongrafted cucumbers in April of both years were lower than those of the grafted crops. Cucumber cultivars Excelsior and Taurus grafted onto Marvel winter squash rootstock had higher yields in May 2016 compared with the yields of the nongrafted plants in the same month. The enhanced early-season yields of grafted plants were observed on cucumber cultivars Excelsior and Socrates in 2017 regardless of rootstocks. Grafting also increased the entire season’s yields of the three cucumber cultivars in 2017, but not in 2016. More comprehensive evaluations about cold tolerances of newly released cucumber rootstocks are needed. Further studies are also warranted to improve our understanding of effects of rootstock and scion interactions on cucumber growth and yield in high tunnel production.
Fresh-consumed parthenocarpic cucumbers (Cucumis sativus) are a popular and high-value crop sold in local food markets. The parthenocarpic plant characteristics and climbing growth habit make cucumbers an ideal crop for high-tunnel production. Major types of parthenocarpic cucumbers include Beit alpha and mini, Dutch greenhouse, American slicer, and Japanese. Information regarding yield performance, plant growth, and disease resistance of the four types grown in high-tunnel conditions is limited. In this study, 16 parthenocarpic cucumber cultivars from the four major types were evaluated in high tunnels at three locations in Indiana and Illinois during Spring 2018. Plants were pruned to a single stem that was supported on a string. At all locations, the cultivars that had the most total yields were Beit alpha and mini, although their total yields were not always significantly higher than that of all the others. However, Beit alpha and mini cucumbers had high percentages of unmarketable fruit, mainly because of insect feeding damage and mechanical injuries on the skins that led to scarred fruit. Dutch greenhouse cultivars had relatively lower marketable yields at two of the three locations where there was a high percentage of misshaped fruit. ‘Tasty Green’ Japanese cucumber consistently had the lowest yields at all three locations. This cultivar also produced the most side shoot growth and, therefore, more pruning waste. The Japanese types ‘Tasty Jade’ and ‘Taurus’ had yields comparable to those of other cultivars, and they were more tolerant to two-spotted spider mites (Tetranychus urticae). However, ‘Tasty Jade’ was the cultivar most susceptible to powdery mildew (Podosphaera xanthii and Golovinomyces cichoracearum). ‘Corinto’ American slicer cucumber had relatively high yields at two of the three locations. This cultivar also had the highest percentage of marketable fruit. Information provided in the study is readily useful for growers using high tunnels when selecting parthenocarpic cucumber cultivars. It is also valuable for seed companies wishing to breed new cultivars adaptive for high-tunnel production.