Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Daniel P. Gillespie x
  • Refine by Access: All x
Clear All Modify Search
Open access

Daniel P. Gillespie, Gio Papio, and Chieri Kubota

Hydroponic leafy green production offers high productivity and quality of crops but requires good management of pH and electrical conductivity (EC) to optimize the nutrient uptake. Nutrient solution pH is typically managed between 5.5 and 6.5, whereas lowering pH to more acidic range (e.g., <5.0) can potentially mitigate problematic waterborne diseases. Plant response to low pH is species specific and generally involves direct effect of increased hydronium ions and indirect effects of pH-dependent factors, such as low cations availability. To develop a new hydroponic nutrient management strategy, ‘Corvair’ spinach plants were grown under pH 4.0, 4.5, 5.0, and 5.5 of a hydroponic nutrient solution using a deep-water culture system in a growth chamber. Spinach shoot and root mass after 19 to 20 days declined with lowering pH. At the lowest pH of 4.0, plants displayed stunted overall growth and severely inhibited root development. Plant growth and morphology at pH 4.5 or 5.0 were normal but small, suggesting that growth reduction at these pH was likely a result of reduced nutrient uptake. Plant tissue analyses showed decreased N, P, K, Mg, S, Cu, Fe, Mn, and Zn concentration as pH decreased. When the strength of nutrient solution was increased three times at a low pH 4.5 to improve the overall nutrient availability, spinach shoot and root fresh weight with high nutrient concentrations (EC 3.4 dS·m−1) significantly improved but was still lower than those in the control (pH 5.5 and EC 1.4 dS·m−1), respectively. Plant tissue analysis showed that lowering pH to 4.5 significantly reduced tissue concentrations of P, K, Ca, Mg, S, Cu, Mn, and Zn compared with those in the control. Under low pH and increased EC treatment (pH 4.5 and EC 3.4 dS·m−1), all dry leaf nutrient concentrations were similar or higher than those of the control, except Mg and Zn, which showed a lower concentration than the control with a weak significance (P < 0.06). This suggests that additional optimization of nutrient formula might further improve the spinach growth at low pH. Together, our results will help to develop a new and low-cost nutrient management methodology to produce leafy greens hydroponically.

Open access

Daniel P. Gillespie, Chieri Kubota, and Sally A. Miller

Rootzone pH affects nutrient availability for plants. Hydroponic leafy greens are grown in nutrient solutions with pH 5.5 to 6.5. Lower pH may inhibit plant growth, whereas pathogenic oomycete growth and reproduction may be mitigated. General understanding of pH effects on nutrient availability suggests likely toxicity and deficiency of specific micronutrients. We hypothesized that if adjustments are made to the micronutrient concentrations in solution, plants will grow in lower-than-conventional pH without nutrient disorders, while oomycete disease incidence and severity may be reduced. To develop a new nutrient solution management strategy, we examined pH of 4.0, 4.5, 5.0, and 5.5 with or without micronutrient adjustments for growing two cultivars of basil plants Dolce Fresca and Nufar in a greenhouse hydroponic deep-water culture (DWC) system. Micronutrient adjustments included reduced concentrations of copper, zinc, manganese, and boron by one-half and doubled molybdenum concentration. Plants harvested 20 to 28 days after transplanting did not show significant effects of pH or the micronutrient adjustment. Phosphorus, calcium, magnesium, sulfur, boron, manganese, and zinc concentrations in leaves significantly declined, while potassium and aluminum concentrations increased with decreasing pH. However, these changes and therefore micronutrient adjustments did not affect basil plant growth significantly. ‘Nufar’ basil plants were then grown in a growth chamber DWC system at pH 4.0 or a conventional 5.5 with and without inoculation of Pythium aphanidermatum zoospores. Fourteen days after inoculation, P. aphanidermatum oospore production was confirmed only for the inoculated plants in pH 5.5 solution, where a significant reduction of plant growth was observed. The results of the present study indicate that maintaining nutrient solution pH at 4.0 can effectively suppress the severity of root rot caused by P. aphanidermatum initiated by zoospore inoculation without influencing basil growth.