Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Da Man x
Clear All Modify Search

Drought stress is a major factor in turfgrass management; however, the underlying mechanisms of turfgrass drought tolerance are not well understood. This greenhouse study was designed to investigate proline and hormone responses to drought stress in two tall fescue [Festuca arundinacea (Schreb.)] cultivars differing in drought tolerance. The two cultivars, Van Gogh (relatively drought-tolerant) and AST7002 (relatively drought-sensitive), were established and grown under either well-watered (maintaining 90% container capacity) or drought stress (≈26% container capacity) and then re-watered. Drought stress reduced turfgrass quality, relative leaf water content (LWC), leaf indole-3-acetic acid (IAA) and cytokinin zeatin riboside (ZR) content, and increased proline and abscisic acid (ABA) content. ‘Van Gogh’ had greater turfgrass quality rating, LWC, proline, ABA, and ZR content relative to ‘AST7002’ under drought stress conditions. At the end of drought stress, leaf proline, ZR, and ABA content were 32%, 43%, and 50% higher in ‘Van Gogh’ relative to ‘AST7002’, respectively. No cultivar difference was observed under well-watered conditions. The results of this study suggest that the proline, ABA, and ZR content are associated with drought tolerance. Selection and use of the cultivars with higher proline, ABA, and ZR content under drought stress may be a practical approach to improve tall fescue drought tolerance.

Free access