Search Results
Cold-tolerant, Ogura male-sterile, somatic hybrid rapeseed (Brassica napus L.) lines were used as maternal parents in two independent introgression experiments. In one experiment, an atrazine-sensitive B. napus (aacc) somatic hybrid was crossed directly with a male-fertile pak choi (B. campestris Chinensis Group, aa) accession. Allotriploid (sac) progeny were then backcrossed to the recurrent pak choi parent. Forty-five percent of the progeny from the first backcross were determined to be diploids (aa). In the other experiment, an atrazine-resistant B. napus somatic hybrid was crossed first to a bridge line. Three additional backcross generations to Chinese cabbage (B. campestris Pekinensis Group) resulted in Chinese cabbage resistant to black rot (Xanthomonas campestris pv. campestris). These materials may be useful for production of B. campestris hybrid vegetable seed.
Forty hybrid broccoli [Brassica oleracea L. (Italica Group)] accessions were screened for heat tolerance and holding ability over three planting dates in 1988 at the Long Island Horticultural Research Laboratory in Riverhead, N.Y. Holding periods were quantified using the number of consecutive days between the time individual heads reached 10 cm diameter and cutting, which occurred when the sepals had fully expanded and had just begun to separate. In 1989 and 1991, heat stress was applied at various weeks during maturation to determine the most sensitive stage or stages of plant development in terms of reduction in holding period and head weight. Field studies and heat stress experiments indicate that heat stress may be most critical during the time the immature inflorescence measures 5 to 10 mm in diameter. This stage corresponds to ≈ 3 weeks before harvest for summer plantings in the northeastern United States.
Bell and chili peppers are important vegetable and spice commodities worldwide. Significant yield reductions have been attributed to damage caused by root-knot nematodes (RKNs; Meloidogyne spp.). This study addresses the need for developing pepper varieties that have high resistance to RKN, which is now of increasing importance due to restrictions on the use of fumigant nematicides. Our goal is to provide a nonchemical alternative to sustain commercial pepper production in Florida, which is a major producer of peppers in the United States. We evaluated ‘UFRJ107(6)A3’, an advanced inbred line developed from a cross between Capsicum annuum L. ‘Jalapeno’ and ‘Round of Hungary’, for resistance against the nematode in comparison with the parental and three other Capsicum cultivars, namely, C. annuum ‘Charleston Belle’, ‘California Wonder’, and C. chinense Jacq. ‘Datil’ in two separate growth chamber experiments. Based on egg mass indices and reproduction factors, ‘UFRJ107(6)A3’ was significantly more resistant to M. incognita compared with the other five cultivars. When tested with five RKN species, ‘UFRJ107(6)A3’ showed comparably high levels of resistance to M. arenaria and M. floridensis as ‘California Wonder’ based on the nematode reproduction factor. In ‘UFRJ107(6)A3’, however, there were no detectable M. arenaria egg masses, and M. incognita reproduction was minimal compared with that of ‘California Wonder’; both cultivars supported the reproduction of M. enterolobii and M. javanica, although the reproduction factors of M. enterolobii were ≈10-fold higher than M. javanica. To characterize the mechanism of high resistance to M. incognita in ‘UFRJ107(6)A3’, we examined the extent to which infective second-stage juveniles (J2s) were able to penetrate its roots in comparison with the susceptible ‘California Wonder’ and ‘Datil’ in two independent experiments; we conducted RKN root penetration assays with a single plant in a pot and two plants in a single-pot choice test using ‘Datil’ and ‘California Wonder’, respectively, as susceptible standards. In both assays, M. incognita J2s were absent in the roots of ‘UFRJ107(6)A3’ 7 days after inoculation but were present in the susceptible cultivars, indicating that resistance has an effect at the root invasion stage. In growth chamber experiments, at constant temperatures of 28 and 30 °C, ‘UFRJ107(6)A3’ exhibited M. incognita resistance superior to its parents and to the standard resistant bell pepper ‘Charleston Belle’, thus offering the potential to enhance specialty pepper production and for use as a nematode-resistant rootstock for commercial bell peppers.
One of the proposed alternative chemicals for methyl bromide is 1,3-D. The most common forms of 1,3-D products are cis- or trans-isomers of 1,3-D with the fungicidal agent, chloropicrin, containing such mixtures as 65% 1,3-D and 35% chloropicrin (C-35). Soil fumigants are commonly applied under a polyethylene film in Florida raised bed vegetable production. Much of the research regarding cropping system effects of alternative fumigants to methyl bromide has focused primarily on plant growth parameters, with little regard to the atmospheric fate of these chemicals. The objective of this research was to determine both the atmospheric emission of 1,3-D under different plastic film treatments and to evaluate effects of application rates of 1,3-D and C-35 on plant pests, growth, and yield of Sunex 9602 summer squash (Cucurbita pepo L.). Results showed that use of a high barrier polyethylene film (or virtually impermeable film - VIF) greatly reduced fumigant emission compared to ground cover with conventional polyethylene films or uncovered soil. Summer squash seedling survival was a severe problem in several of the 1,3-D alone treatments where no fungicidal agent was added, whereas C-35 resulted in excellent disease control at both full and one-half of the recommended application rates for this chemical. Both 1,3-D and C-35 provided good plant stands and higher yields when applied at their recommended application rates. However, all squash yields were lower than typical squash production levels due to late planting and early winter frost kill. Chemical names used: 1,3-dichloropropene (1,3-D); trichloronitropropene (chloropicrin).
Methyl bromide (MeBr) is an important and effective soil fumigant commonly used to control weeds and soilborne pests. Because MeBr has been implicated as a contributor to the depletion of stratospheric ozone, it is scheduled for phaseout by 2005. This study examined nonchemical and chemical practices as alternatives to MeBr. Off-season flooding followed by a series of soil preplant chemical treatments [MeBr with 33% Pic; 1,3-D mixed with 17% (C-17) and 35% (C-35) Pic combined with Peb; and metam-Na combined with 1,3-D and Peb were evaluated on spring tomato (Lycopersicon esculentum Mill.) and eggplant (Solanum melongena) production in northern Florida. Pest control and tomato and eggplant yields were not significantly different between the flooded and non-flooded control plots. The most effective alternatives to MeBr were 1,3-D and Pic mixtures (C-17 and C-35) combined with Peb. Tomato and eggplant yields for these chemicals were statistically equivalent to that of MeBr. Tomato, but not eggplant, yield and nematode control were poor with metam-Na combined with 1,3-D and Peb in comparison to the other fumigant combinations. Chemical names used: 1,3-dichloropropene (1,3-D); trichloronitromethane [chloropicrin (Pic)]; S-propyl butyl(ethyl)thiocarbamate [pebulate (Peb)]; sodium N-methyldithiocarbamate (metam-sodium (metam-Na)].
Tomato (Lycopersicon esculentum Mill.) was grown to evaluate various chemicals as possible alternatives to methyl bromide soil fumigation. Due to a combination of weeds, nematodes, and soil fungi, the use of a broad-spectrum fumigant has been essential for economical tomato production in Florida. Methyl bromide (MBr) and combinations of MBr with chloropicrin (Pic) are the fumigants of choice for most growers using polyethylene mulch culture. In 1991, MBr was allegedly associated with stratospheric ozone depletion. The U.S. Environmental Protection Agency has since mandated a phaseout of MBr for soil fumigation in the United States by the year 2001. At three locations in Florida, alternative soil fumigants were evaluated, including soil injected 98% MBr—2% Pic at 450 kg·ha-1, 67% MBr—33% Pic (390 kg·ha-1), Pic (390 kg·ha-1), dichloropropene + 17% Pic (1,3-D + Pic) at 327 L·ha-1, and metam-sodium (935 L·ha-1). Also, metam-sodium and tetrathiocarbonate (1870 L·ha-1) were applied by drip irrigation. Dazomet (450 kg·ha-1) was surface applied and soil incorporated. Pebulate (4.5 kg·ha-1) was soil incorporated with some treatments. Pic and 1,3-D + Pic treatments provided good to moderate control of nematodes and soil fungi except in one of the six studies, in which nematode control with 1,3-D was moderate to poor. Nutsedge densities were suppressed by addition of pebulate. Tomato fruit yields with 1,3-D + Pic + pebulate and with Pic + pebulate at the three sites ranged from 85% to 114%, 60% to 95%, and l01% to 119%, respectively, of that obtained with MBr treatments. Pest control and crop yield were lower with treatments other than the above pebulate-containing or MBr-containing treatments. These studies indicate that no one alternative pesticide can provide the consistent broad-spectrum control provided by MBr. Chemical names used: trichloronitromethane (chloropicrin); 1,3-dichloropropene (1,3-D); sodium N-methyldithiocarbamate (metam-sodium); sodium tetrathiocarbonate (tetrathiocarbonate); 3,5-dimethyl-(2H)-tetrahydro-l,3,5-thiadiazine-2-thione (dazomet); S-propyl butyl(ethyl)thiocarbamate (pebulate).
Tomato (Lycopersicon esculentum Mill.) was grown to evaluate various chemicals as possible alternatives to methyl bromide as a soil fumigant. Due to pest pressures from weeds, nematodes, and soil fungi, the use of a broad-spectrum fumigant is essential for economical tomato production. Methyl bromide (MBr) is the fumigant of choice for most growers using polyethylene mulch culture. In 1991, MBr was identified to be in a group of chemicals allegedly responsible for depletion of the stratospheric ozone layer. The U.S. Environmental Protection Agency (EPA) has since called for a phaseout of MBr by the year 2001. At several locations in Florida, alternative soil fumigants were evaluated including 98% MBr-2% chloropicrin (Pic) at 450 kg·ha–1, 67% MBr 33% –Pic (392 kg·ha–1), Pic (390 kg·ha–1), 1,3-dichloropropene + 17% Pic (1,3-D+C17) at 327 L·ha–1, and metham sodium (935 L·ha–1). Metham sodium was also applied by drip irrigation as well as enzone (1870 L·ha–1). Dazomet (448 kg·ha–1) was surface applied and incorporated. Pebulate (4.5 kg·ha–1) was incorporated with some treatments. Pic and 1,3-D+C17 treatments provided control of nematodes and soil fungi. With the addition of pebulate, some nutsedge control also was obtained. Tomato fruit yields with 1,3-D+C17 + pebulate and with Pic + pebulate ranged from 86% to 100% of that obtained with MBr treatments. Pest control and crop production were lower with the other treatments than with the above combinations and with MBr. These studies indicate that no one pesticide can provide the broad spectrum control provided by MBr.