Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D.S. Neuman x
Clear All Modify Search
Free access

D.A. Devitt, R.L. Morris and D.S. Neuman

A 2-year study was conducted to quantify the actual evapotranspiration (ETa) of three woody ornamental trees placed under three different leaching fractions (LFs). Argentine mesquite (Prosopis alba Grisebach), desert willow [Chilopsis linearis (Cav.) Sweet var. linearis], and southern live oak (Quercus virginiana Mill.) (nursery seedling selection) were planted as 3.8-, 18.9-, or 56.8-liter container nursery stock outdoors in 190-liter plastic lysimeters in which weekly hydrologic balances were maintained. Weekly storage changes were measured with a portable hoist-load cell apparatus. Irrigations were applied to maintain LFs of +0.25, 0.00, or -0.25 (theoretical) based on the equation irrigation (I) = ETa/(1 - LF). Tree height, trunk diameter, canopy volume, leaf area index, total leaf area (oak only) and dry weight were monitored during the experiment or measured at final harvest. Average yearly ETa was significantly influenced by planting size (oak and willow, P ≤ 0.001) and leaching fraction imposed (P ≤ 0.001). Multiple regressions accounting for the variability in average yearly ETa were comprised of different growth and water management variables depending on the species. LF, trunk diameter, and canopy volume accounted for 92% (P ≤ 0.001) of the variability in the average yearly ETa of oak. Monthly ETa data were also evaluated, with multiple regressions based on data from nonwater-deficit trees, such that LF could be ignored. In the case of desert willow, monthly potential ET and trunk diameter accounted for 88% (P ≤ 0.001) of the variability in the monthly ETa. Results suggest that irrigators could apply water to arid urban landscapes more efficiently if irrigations were scheduled based on such information.

Free access

D.A. Devitt, R.L. Morris, L.K. Fenstermaker, M. Baghzouz and D.S. Neuman

Nineteen flowering landscape species were sprinkle irrigated with either reuse water or fresh water, with an additional treatment of reuse water plus shade (solar radiation reduced by 24%), for 113 days during late summer and early fall in southern Nevada. The species selected were common to mixed landscape areas on golf courses in southern Nevada transitioning to reuse water. An index of visual damage (IVD) was assessed, along with an assessment of flower production, canopy temperature, tissue ion analysis and spectral reflectance. The IVD values separated based on species (p < 0.001), treatment (p < 0.001) and by a species by treatment interaction (p < 0.001). Irrigating with reuse water plus shade reduced the IVD compared to the reuse without shade in 7 of the 19 species (p < 0.05). When IVD values were included for all species, 40% of the variation in the IVD values could be accounted for if N, B, Ca, Mg, Na, and Zn were included in the regression equation. Higher r 2 values were obtained when individual species were isolated, with regression equations differing based on tissue ion combinations [e.g., ice plant (Mesembryanthemum crystallinum L.) r 2 = 0.81 IVD↑, Na↓, Mn↑]. Three vegetation indices chlorophyll index (CHL), red/far red (R/FR) and water band index/normalized difference vegetation index (WBI/NDVI)) accounted for 51% of the variation in the IVD values. As much as 72% of the variation in vegetation indices could be accounted for based on tissue ion concentrations when separated based on treatment, with Na being the only common ion in all of the highest correlations. Flower production was highest in the reuse plus shade treatment in all 13 species flowering during the experimental period, with as much as 86% of the flower production variation driven by different tissue ion concentrations [purple cup (Nierembergia hippomanica), r 2 = 0.86, flowers↑, Mn↑, Zn↓]. Nine of the nineteen species had acceptable levels of foliar damage (IVD < 2.0). We believe that if the spray irrigation can be minimized (bubblers/drip) and/or partial shade provided, through multi-story landscape designs, a more favorable response will be observed.