Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D.R. McCarty x
Clear All Modify Search


Trees of old-line ‘Atwood’ navel sweet orange [Citrus sinensis (L.) Osbeck] on Rubidoux trifoliate orange [Poncirus trifoliata (L.) Raf.] were planted in 1970 at 331 to 801 trees per ha to determine effects of tree spacing on growth, yield, production costs, and fruit quality. Growth measured as trunk circumference and hence fruit-bearing capacity per tree was inversely proportional to tree density but fruit yields per hectare increase with close spacing.

Open Access

The shrunken-2 (sh2) mutant of maize (Zea mays L.) increases sucrose and reduces starch in developing endosperm. An associated trait is poor seed and seedling vigor in seeds containing the mutation. The specific effects of sh2 mutant endosperm on embryo and seedling vigor were determined by analyzing seeds that contained either concordant wild-type or nonconcordant combinations of mutant and wild-type embryo and endosperm genotypes. The nonconcordant seed types that contained a wild-type embryo in association with a sh2 mutant endosperm or a sh2 mutant embryo in association with a wild-type endosperm were generated using the TB-3La translocation chromosome in which a wild-type Sh2 gene is attached to the centromeric portion of a B chromosome. Under stress conditions (complex stress vigor test), the seeds with mutant endosperm had lower germination, seedling fresh and dry weight, and index of conductivity than seeds with wild-type endosperm. Mutant endosperm and embryos excised from mutant endosperm imbibed more water than wild-type endosperm or embryos excised from wild-type endosperm. Because of the high concentration of osmotic solutes in the mutant endosperm, a rapid water uptake may induce a membrane disorganization. Leachate conductivities of seeds with mutant endosperm were higher than seeds with wild-type endosperm. In addition, a higher sucrose content and a lower raffinose to sucrose ratio were measured in the wild-type embryos associated with mutant endosperms than in the normal embryos excised from concordant wild-type seeds. These results suggest that a high rate of water uptake caused by the elevated concentration of osmotic solutes in seeds with mutant endosperms may affect membrane integrity during imbibition. Alternatively, the lower raffinose to sucrose ratio present in the mutant endosperm class might affect stabilization of cell membranes during seed desiccation. Embryos cultured in media containing 10% starch or no carbohydrate produced smaller seedlings than embryos cultured in 5% or 10% sucrose. Wild-type embryos excised from mutant endosperms exhibited lower germination in 0% and 5% sucrose media than embryos from concordant seed, indicating that reduced water uptake rates associated with lower external osmotic potential (10% sucrose) can improve vigor of embryos associated with sh2 mutant endosperm. The reduced vigor of embryos and seedlings that develop in association with sh2 mutant endosperm can be traced to the physiological and biochemical effects of the elevated sucrose levels present during seed formation and imbibition.

Free access