Search Results
Chambers were constructed to measure gas exchange of entire potted grapevines (Vitis vinifera L.). The plant enclosures were constructed from Mylar film, which is nearly transparent to photosynthetically active radiation. Maintaining a slight, positive, internal pressure allowed the Mylar chambers to inflate like balloons and required no other means of support. The whole-plant, gas-exchange chamber design and construction were simple and inexpensive. They were assembled easily, equilibrated quickly, and did not require cooling. They allowed for the measurement of many plants in a relatively short period. This system would enable the researcher to make replicated comparisons of treatment influences on whole-plant CO2 assimilation throughout the growing season. While CO2 measurement was the focus of this project, it would be possible to measure whole-plant transpiration with this system.
Sustainable alternatives for saline drainage water management in areas such as California's San Joaquin Valley are needed. Previous work has demonstrated the short-term potential for reuse of saline drainage water for irrigation in this area. Results from our 6-year cyclic drainage reuse study, however, indicate that soil structural problems may occur which can greatly reduce stand establishment and crop yields in periodically salinized soils. To prevent these problems, we are evaluating the effectiveness of winter cover crop incorporation and gypsum applications relative to conventional fallows, for improving/maintaining soil physical properties and crop productivity in cyclically salinized soils. Six winter cover crop/fallow treatments have been imposed upon a rotation of tomatoes, tomatoes and cotton as summer crops. By monitoring water use, relevant soil physical and chemical properties as well as crop performance during the course of this 3-year rotation study, we are assessing the potential benefits and constraints of using winter cover crops in drainage water reuse systems.
Abstract
Fruit of mango (Mangifera indica L.) were individually sealed in heat-shrinkable plastic films, stored for 2 weeks at 12°C, and then ripened at 21°. Weight loss of film-sealed fruit was significantly less than that of nonsealed fruit. There were no significant differences in firmness, color development of the skin, decay development, or time to ripen to the soft-ripe stage between film-sealed and nonsealed fruit.
Winter-hardiness of zoysiagrass (Zoysia spp.) cultivars is an important attribute throughout the biogeographical transition zone; thus, the inability to withstand freezing temperatures may limit the use of these cultivars. The objective of this research was to determine the freeze tolerance (LT50) of nine zoysiagrass cultivars grown in Raleigh, NC. Four Zoysia japonica Steud. cultivars (JaMur, Palisades, Empire, and Ultimate) and five Zoysia matrella (L.) Merr. cultivars (Pristine, Zeon, Cavalier, Diamond, and Zorro) were chosen to undergo freeze testing. Cores were taken from the field in Feb. 2008, 2009, and 2010 for the winter trials and in Apr. 2008, 2009, and 2010 for the spring trials (after green-up had occurred). The cores were subjected to freeze treatments of –6, –8, –10, –12, and –14 °C in programmable freezers. After thawing, cores were placed in a 41/20 °C greenhouse to promote green-up. Cores were rated for green-up after 4 weeks on a 1 to 9 scale. Nonlinear regression analysis was used to calculate an LT50 value for each cultivar. ‘JaMur’, ‘Palisades’, ‘Empire’, and ‘Ultimate’ were no different in the winter trials with an LT50 ranging from –9.8 to 10.2 °C. Among the matrella species, ‘Zeon’, ‘Cavalier’, and ‘Zorro’ were no different but ‘Diamond’ (LT50 of –6.0 °C) and ‘Pristine’ (LT50 of –5.7 °C) had less tolerance to freezing than the other matrella cultivars (LT50 range from –9.7 to –9.8), suggesting lower ability to cold-acclimate in the field than the other cultivars. Shoot weights of cores were correlated to visual green-up ratings for each cultivar with an R 2 range from 0.70 to 0.99 indicating a good relationship between the green-up ratings and shoot weights.
Tomato is an important cash crop in many developing countries. However, smallholder farmers often lack access to improved cultivars and breeding programs to develop locally adapted cultivars are limited. Participatory crop improvement (PCI) approaches can be used to increase farmer access to improved cultivars. In this project, we used the mother and baby trial (MBT) design to introduce and evaluate tomato cultivars in three villages in the Morogoro Region of Tanzania. Mother trials were conducted in seven environments within the three villages, and variance partitioning revealed significant genetic effects for all traits measured with h 2 ranging from 0.74 to 0.90 for yield and disease reaction, respectively. In baby trials, farmers provided qualitative rankings of cultivars for 16 characteristics, including vigor, yield, harvest period, diseases, insect damage, fruit quality, and salability. Results from baby trials indicated that introduced cultivars were locally acceptable to farmers, except for traits related to marketability. Outcome Mapping was used to evaluate progress in each of the three villages and results suggested that high stakeholder participation levels could predict future adoption of introduced cultivars. Our findings provide a framework for evaluating, selecting, and breeding tomato and other horticultural crops in developing countries using the MBT design for PCI.
Cultivar and planting site are two factors that often receive minimal attention, but can have a significant impact on the quality of apple (Malus ×domestica) produced. A regional project, NE-183 The Multidisciplinary Evaluation of New Apple Cultivars, was initiated in 1995 to systematically evaluate 20 newer apple cultivars on Malling.9 (M.9) rootstock across 19 sites in North America. This paper describes the effect of cultivar and site on fruit quality and sensory attributes at a number of the planting sites for the 1998 through 2000 growing seasons. Fruit quality attributes measured included fruit weight, length: diameter ratio, soluble solids concentration (SSC), titratable acidity (TA), flesh firmness, red overcolor, and russet. Fruit sensory characteristics rated included crispness, sweetness, and juiciness, based on a unipolar intensity scale (where 1 = least and 5 = most), and acidity, flavor, attractiveness, and desirability based on a bipolar hedonic scale (where 1 = dislike and 5 = like extremely). All fruit quality and sensory variables measured were affected by cultivar. The two-way interaction of cultivar and planting site was significant for all response variables except SSC, TA, russet, crispness, and sweetness ratings. The SSC: TA ratio was strongly correlated with sweetness and acidity sensory rating, but was weakly correlated with flavor rating. The results demonstrate that no one cultivar is ideally suited for all planting sites and no planting site is ideal for maximizing the quality of all apple cultivars.
Researchers have collected a considerable amount of data relating to apple (Malus ×domestica) cultivars and rootstocks over the past 30 years, but much of this information is not easily accessible. The long-term goal of our working group is to increase access to this information using online technology available through eXtension. In eXtension, researchers and extension personnel are developing a community of practice (CoP) to increase the quality and amount of online information for individuals interested in our work [referred to as a community of interest (CoI)]. For this project, our CoI is broadly defined as commercial apple producers, nursery professionals, county extension educators, Extension Master Gardeners, home gardeners, and consumers. Our CoP is developing diverse educational tools, with the goals of increasing productivity, profitability, and sustainability for commercial apple production. Additionally, we will provide other members of our CoI access to research-based, reliable information on the culture of apples. We chose to begin our focus on cultivars and rootstocks adapted to the eastern United States and will add other U.S. regions as our resources and interest in our project grows.