Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: D.M. Granberry x
  • Refine by Access: All x
Clear All Modify Search
Open access

Joseph D. Norton and D. M. Granberry

Abstract

Plant and fruit characteristics of the parents and progeny from the interspecific cross Cucumis melo L. (PI 140471) × C. metuliferus E. Mey. (PI 292190) are described. An electron microscope scan (EMS) indicated that F1 seed exhibited both the netting from C. metuliferus and the ridging from C. melo but pollen from both parents and the F1 appeared to be identical. The F1 plants had lobed leaves as in the staminate parent (C. metuliferus). Trichomes of the F1 were intermediate. The F1 consisted of light green fruit with raised dark green areas and dark green fruit. Thirteen plants with spiney fruit were found in the F2. Ribbing and netting of fruit and andromonoecious flower types occurred in F2 progeny but did not occur in either parent. Weight, flesh and rind thickness, length, and diameter of F1 and F2 fruit greatly exceeded those of either PI 140471 or C. metuliferus. Attempts to duplicate the original cross were unsuccessful due to embryo abortion except for one plant grown by embryo culture. Backcrosses of the F1 to C. metuliferus were unsuccessful in the greenhouse and field due to embryo abortion except for 1 plant produced by embryo culture.

Open access

D. M. Granberry and J. D. Norton

Abstract

Progeny from a hybridization of C. melo L. (PI 140471), a feral Cucumis melo, with the nematode-resistant African horned cucumber (C. metuliferus E. Mey.) (PI 292190) were screened for resistance to Meloidogyne incognita acrita Chitwood. Although C. metuliferus exhibited resistance, no resistance was observed in PI 140471 nor in the F2 generation after inoculation with a larval suspension having 600 larvae/ml. However, when grown in contact with chopped galled roots, certain progeny appeared to be resistant. Evaluation of egg mass production revealed that the resistant plants produced significantly fewer eggs than susceptible plants.

Free access

W.T. Kelley, D.M. Granberry, and D.C. Sanders

Hank Kemble is the only county agent role ever cast in a network television series. On Green Acres, Mr. Kemble always had advice for novice farmer Oliver Douglas. Unfortunately, Mr. Kemble's advice was usually vague and uncertain. More unfortunate is that this is the only image many people have regarding Cooperative Extension. As the last segment of the land-grant system established, Extension personnel were the last recognized as equals among faculty. The mistaken image of the county agent as a book-trained farm boy with no common sense and a government job has been reinforced by declining respect for the farming community. In reality, county agents today deal with social and agricultural issues in urban and rural communities. Agents work with reduced staffs while being educators, scientists, and administrators in addition to routine duties. Extension specialists routinely teach and conduct research. National and international recognition and peer-reviewed publications are necessary for promotion while conducting traditional duties, too. As educational requirements of agents and specialists increased, numbers of undergraduates entering Extension dropped (<1% of Univ. of Georgia horticulture graduates in the last 5 years). Georgia specialists with a PhD increased from 60% (1979) to 89% (1996). Agents with MS degrees increased from 36% (1987) to 45% (1996). Image, salary, and job security determine if Extension can attract qualified personnel. Extension was never a Hank Kemble organization and graduates must be convinced that Extension is a viable and respectable career and Hank Kemble doesn't work here anymore.

Free access

K.M. Batal, D.M. Granberry, and B.G. Mullinix Jr.

The effects of three rates of N, Mg, and B on cauliflower (Brassica oleracea, Botrytis group) yield, average curd mass, and hollow stem disorder were evaluated on sandy and clay loam soils. Cultivars White Empress and Stovepipe were tested on the sandy loam soil and `White Empress' was tested on the clay loam soil. Maximum mean curd mass and maximum yields were obtained with the highest N rates (269 and 381 kg·ha-1) applied to sandy loam and clay loam soils, respectively. Yield response to increased N rates varied with cultivar. Increasing Mg from 22.5 to 90 kg·ha-1 did not affect yield or curd mass on clay loam soil, but increased yield and mean curd mass on sandy loam soil. The Mg effect on curd mass was influenced by N and B rates. On both soil types, the higher Mg and B rates reduced the incidence of hollow stem, but the Mg effect was influenced by N applications. On clay loam soil, increasing B from 2.2 to 8.8 kg·ha-1 reduced hollow stem but had no effect on yield or curd mass. On sandy loam soil, B at 4.4 kg·ha-1 maximized yield and curd mass, but the hollow stem disorder continued to decrease as B rates were increased from 2.2 to 8.8 kg·ha-1.

Free access

K.M. Batal, D.R. Decoteau, J.T. Garrett, D.M. Granberry, D.C. Sanders, J.M. Davis, G.D. Hoyt, and R.J. Dufault

Cucumber and potato crops were tested in a rotation with winter cover crops at different locations in Georgia, North Carolina, and South Carolina from 1991 to 1994. Biomass DM of vegetable crops was greatest when grown after crimson clover. Clover plantings resulted in a greater biomass than wheat when preceded spring cucumber crop. Vegetable biomass produced on clover plots or with N rates of 60 to 120 kg·ha–l was equivalent. Nitrogen recovery by cover and vegetable crops was enhanced by clover plantings. Clover biomass (tops only) provided an average of 138 kg N/ha for the cucumber crop, compared to an average of 64 kg N/ha provided by wheat. Nitrogen recovery by vegetable crops was also enhanced with 60–120 kg N/ha rates. Yields were highest when high N rates were used and when crops were produced on clover plots. Vegetable yield, cover crop biomass, and N recovery were positively correlated with vegetable biomass and applied N.

Free access

K.M. Batal, D.R. Decoteau, D.M. Granberry, B.G. Mullinix, D.C. Sanders, G.D. Hoyt, and R.J. Dufault

Pepper and sweet corn were tested in a rotation with crimson clover and velvet bean (Mucuna pruriens) cover crops at different locations in Georgia, North Carolina, and South Carolina from 1995 to 1996. Vegetable production with minimum-till following the cover crops was compared with two different conventional methods (following rye cover or fallow). All minimum-till/cover crop treatments caused reduction of total number of pepper fruit, compared to the conventional methods. Effects on premium grade (Fancy + U.S. #1) were similar to the effects on total fruit. The highest percentage of premium grade was produced by both conventional methods in 1996. Sweet corn responded similarly to these treatments in 1995. However, in 1996, clover plots had corn yields nearly as good as the conventional plots. As in bell pepper, plots with velvet bean cover produced lower yield in 1996. Treatment effects on number of marketable corn were the same as the effects on total ears produced.

Free access

K.M. Batal, M.R. Hall, D.M. Granberry, J.T. Garrett, D.R. Decoteau, R.T. Dufault, G.D. Hoyt, T.C. Gilsanz, J.M. Davis, and D.C. Sanders

A vegetable production system using winter cover crops and N rates was evaluated for several years in Georgia, South Carolina, and North Carolina. Snap bean, cucumber, tomato, potato, and sweetpotato crops were tested at different locations. Cover crop plots produced higher yields and better quality in all locations as seasons progressed over 4 years. Soil N levels in fallow, wheat, and clover plots were similar at initiation, but N gradually increased in clover plots in successive years. Yield and quality of root crops improved with Crimson clover without N applications compared to fallow plots with 60 kg N/ha. Effects on yield and tuber size are discussed. Nitrate and NH4-N in the soil profile from 15- to 150-cm depth were monitored at all locations. Nitrogen availability, depletion, and leaching below the root zone were determined. At low N rate, clover plots had slightly higher NO3 in the soil profile; however, at high N rate, N supply by clover was not as critical, and N leaching was detected at much lower depths than at low N rates.