Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: D.M. Francis x
Clear All Modify Search

The effect of K fertigation through subsurface irrigation lines on processing tomato (Lycopersicon esculentum Mill.) fruit yield and quality was evaluated in four field trials in California from 2002–04. Fields had exchangeable soil K between 0.48 to 0.85 cmol·kg–1, with high exchangeable Mg (10.6 to 13.7 cmol·kg–1) and a history of yellow shoulder (YS, a fruit color disorder) occurrence. K treatments evaluated included seasonal amount applied (0 to 800 kg·ha–1), fertigation method (continuous versus weekly), and timing (early, mid or late season); foliar K treatments were also included in the 2002 trial. In two fields total and marketable fruit yield were significantly increased by K fertigation, and fruit color improvements were observed in all trials. Among color parameters improved by K fertigation were YS incidence, blended color, and L*, chroma, and hue of the shoulder region of fruit. K fertigation did not affect fruit soluble solids concentration. Yield increased only with fertigation treatments initiated during early fruit set. The effects of fertigation method and rate were inconsistent. Foliar K application was ineffective in increasing either fruit yield or quality.

Free access

Crosses were made between tomato (Lycopersicon esculentum Mill.) inbreds susceptible to races T2 and T3 of bacterial spot (Xanthomonas vesicatoria and Xanthomonas campestris pv. vesicatoria, respectively) and accession PI 114490 with resistance to races T1, T2, and T3. Resistance to race T2 was analyzed using the parents, F1, and F2 generations from one of the crosses. The F1 was intermediate between the parents for disease severity suggesting additive gene action. The segregation of F2 progeny fit a two-locus model (χ2 = 0.96, P = 0.9-0.5) where four resistance alleles are required for a high resistance level, two or three resistance alleles provide intermediate resistance, and zero or one resistance allele results in susceptibility. The narrow sense heritability of resistance to T2 strains was estimated to be 0.37 ± 0.1 based on F2 to F3 parent-offspring regression. A second cross was developed into an inbred backcross (IBC) population to facilitate multilocation replicated testing with multiple races. Segregation for T2 resistance in the inbred backcross population also suggested control was by two loci, lending support to the two-locus model hypothesized based on the F2 segregation. To determine if the same loci conferred resistance to the other races, selections for race T2 resistance were made in the F2 and F3 generations and for race T3 resistance in the F2 through F4 generations. Six T3 selections (F5), 13 T2 selections (F4's that diverged from seven F2 selections), and control lines were then evaluated for disease severity to races T1, T2, and T3 over two seasons. Linear correlations were used to estimate the efficiency of selecting for resistance to multiple races based on a disease nursery inoculated with a single race. Race T1 and race T2 disease severities were correlated (r ≥ 0.80, P< 0.001) within and between years while neither was correlated to race T3 either year. These results suggest that selecting for race T2 resistance in progeny derived from crosses to PI 114490 would be an effective strategy to obtain resistance to both race T1 and T2 in the populations tested. In contrast, selection for race T3 or T2 will be less likely to result in lines with resistance to the other race. PI 114490 had less resistance to T3 than to T2 or T1. Independent segregation of T2 and T3 resistance from the IBC population derived from PI 114490 suggests that T3 resistance is not controlled by the same genes as T2 resistance, supporting the linear correlation data.

Free access

Tomato is an important cash crop in many developing countries. However, smallholder farmers often lack access to improved cultivars and breeding programs to develop locally adapted cultivars are limited. Participatory crop improvement (PCI) approaches can be used to increase farmer access to improved cultivars. In this project, we used the mother and baby trial (MBT) design to introduce and evaluate tomato cultivars in three villages in the Morogoro Region of Tanzania. Mother trials were conducted in seven environments within the three villages, and variance partitioning revealed significant genetic effects for all traits measured with h 2 ranging from 0.74 to 0.90 for yield and disease reaction, respectively. In baby trials, farmers provided qualitative rankings of cultivars for 16 characteristics, including vigor, yield, harvest period, diseases, insect damage, fruit quality, and salability. Results from baby trials indicated that introduced cultivars were locally acceptable to farmers, except for traits related to marketability. Outcome Mapping was used to evaluate progress in each of the three villages and results suggested that high stakeholder participation levels could predict future adoption of introduced cultivars. Our findings provide a framework for evaluating, selecting, and breeding tomato and other horticultural crops in developing countries using the MBT design for PCI.

Free access

Tomato spotted wilt virus (TSWV) and Phytophthora infestans (late blight) in tomato (Solanum lycopersicum) have a worldwide distribution and are known to cause substantial disease damage. Sw-5 (derived from S. peruvianum) and Ph-3 (derived from S. pimpinellifolium) are, respectively, TSWV and late blight resistance genes. These two genes are linked (within 5 cM on several maps) in repulsion phase near the telomere of the long arm on chromosome 9. The tomato lines NC592 (Ph-3) and NC946 (Sw-5) were crossed to develop an F2 population and subsequent inbred generations. Marker-assisted selection (MAS) using three polymerase chain reaction-based codominant markers (TG328, TG591, and SCAR421) was used in F2 progeny with the goal of selecting for homozygous coupling-phase recombinant lines. From 1152 F2 plants, 11 were identified with potential recombination events between Ph-3 and Sw-5; of those, three were male sterile (ms-10). F3 progeny were generated from the remaining eight F2 recombinants, and resistance to both pathogens, or Ph-3 and Sw-5 in coupling phase, was confirmed in three of those. Recombination was suppressed fivefold in our F2 population to 1.11 cM between genes when compared with published maps of the same region. However, MAS was an efficient tool for selecting the desirable recombination events for these two pathogen resistance genes.

Free access