Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: D.A. Rosenberger x
Clear All Modify Search

Natural (hay, wood chips, recycled paper pulp) and synthetic (polypropylene film and polyester fabric) mulches were compared with mechanical tillage and residual herbicides as orchard groundcover management systems (GMSS). In two New York orchards-the Clarke farm and Hudson Valley Lab (HVL—GMSS were applied from 1990 to 1993 in 1.8-m-wide strips under newly planted apple (Malus domestica; `Liberty', `Empire', `Freedom', and advanced numbered selections from the disease-resistant apple breeding program at Geneva, N.Y.) trees. GMS impacts on soil fertility, tree nutrition and growth, yields, crop value, and vole (Microtus spp.) populations were evaluated. After 3 years at the Clarke orchard, extractable NO3, Mn, Fe, B, and Zn concentrations were greater in soil with herbicides than synthetic mulches; soil K and P concentrations were greater with herbicides and wood chips than synthetic mulches. At the HVL orchard, topsoil NO3, K, and Mg concentrations were greater with hay mulch than herbicides or other mulches; Mg, Fe, and B concentrations were lower in soil with wood chips than other GMSs. Soil organic matter content was not affected by GMS. Apple leaf N, K, Cu, and Zn concentrations were greater with herbicides, hay mulch, and polypropylene mulch than cultivation or recycled paper mulch at the HVL orchard during hot, dry Summer 1991. Despite transient differences among GMSS during the initial years, after 4 years of treatments there were no consistent GMS trends in cumulative tree growth or gross yields. The higher establishment and maintenance costs of several mulches were offset by their prolonged efficacy over successive years; crop market values from 1992 to 1994 were considerably greater for trees with polypropylene film, polyester fabric, and hay mulches than herbicides, cultivation, or other mulches. Voles caused more serious damage to trees in synthetic and hay mulches, despite the use of mesh trunk guards and rodenticide bait.

Full access

Control of bitter pit in `Honeycrisp' apples (Malus ×domestica) from trees treated during the growing season with foliar sprays of trifloxystrobin fungicide and calcium was evaluated in four replicated trials over 2 years. All trials were in commercial orchards of `Honeycrisp' trees that were 3 to 6 years old. The effectiveness of combining boron with foliar applications of calcium chloride (CaCl2) was evaluated in two trials, and effectiveness of harpin protein, used either alone or in alternating sprays with CaCl2 was assessed in one trial. Trifloxystrobin applied twice during the 30 days before harvest reduced bitter pit incidence at harvest in one of the four trials, but the reduction was transitory, no longer being evident when fruit were re-evaluated after 63 days of cold storage. Harpin protein did not affect disorder incidence. Calcium sprays failed to control bitter pit in treatments where the total elemental calcium applied was less than 2.7 lb/acre (3.03 kg·ha–1) per year for tree canopies that were sprayed to drip using 100 gal/acre (935.4 L·ha–1) of spray solution. In the two trials where some treatments involved application of at least 2.9 lb/acre (3.25 kg·ha–1) of elemental calcium per season, the incidence of fruit with bitter pit at harvest was reduced by 76% to 90%. Effectiveness of calcium sprays for bitter pit control was not enhanced by superimposing trifloxystrobin, boron, or harpin protein treatments. Flesh firmness at harvest was lower in calcium-treated than in non-treated fruit, and fruit maturity was more advanced on trees receiving boron sprays than on trees receiving no boron. In one trial, where the first calcium application was made approximately 2 weeks after petal fall and 4 days prior to a fruit thinning spray, crop load of trees that received calcium sprays, measured as number of fruit per cm2 trunk cross-sectional area, was 38% greater than on trees that received no calcium sprays. CaCl2 provided better control of bitter pit in `Honeycrisp' than any of the other materials tested.

Full access

Effects of three sterol-demethylation inhibiting (DMI) fungicides and a contact fungicide were compared over two years at each of two locations to determine if fungicide treatments had differential effects on productivity, fruit size and shape, or gross returns for `Empire' apples (Malus ×domestica Borkh.). Treatments were applied four to five times per year during the primary apple scab season. Effects of treatments were assessed by comparing fruit set efficiencies, number of fruit per tree, total harvested fruit weight, and fruit length: diameter ratios at harvest. No significant differences were noted among individual treatments in any of the four trials. However, when treatments were contrasted by grouping individual treatments, significantly larger fruit size was noted for triflumizole treatments vs. combined fenarimol and myclobutanil treatments in one of the four trials and for captan or mancozeb compared to fenarimol and myclobutanil treatments in two trials. None of the DMI fungicides compared in these trials had any consistent adverse affect on fruit size, total yield, or estimated gross return per hectare. We conclude that the plant growth regulator effects of DMI fungicides are inconsistent and are unlikely to have significant economic impact on commercial apple production.

Free access

Three studies were conducted to evaluate the effect of post-infection sprays of prohexadione-calcium on the severity of naturally occurring fire blight infections on 3- and 4-year-old 'Gala' apple trees on blight-susceptible or blight-resistant rootstocks. Although post-infection prohexadione-calcium reduced the dry weight of fire blight strikes removed by pruning in one commercial orchard site, this treatment did not reduce mortality of young 'Gala' trees on M.9 or M.26 rootstocks, and did not reduce the incidence of scion or rootstock cankers on any of the rootstocks tested. We conclude that post-infection treatment with prohexadione-calcium is of no practical value in reducing fire blight symptoms on apple. Our results suggest that resistant apple rootstocks will be very valuable in increasing orchard survival in a fire blight epidemic.

Free access