Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D. Weiss x
Clear All Modify Search

Little is known about the effect of growth temperature on Aster (Compositae, Asteraceae) flower development. In this study, we report on this effect for two aster lines, `Suntana' and `Sungal'. Growth temperature had a dramatic effect on the duration of flower development, ranging from 22 days for plants growing at 29 °C up to 32 days for plants grown at 17 °C. Flower longevity was ≈40% shorter under the higher temperature for both lines. Growth temperature also affected flowerhead form: `Suntana' flowerhead diameter was 20% larger at 17 °C than at 29 °C. The number of `Sungal' florets per flowerhead was four times greater at the lower temperature. Shading (30%) under temperature-controlled conditions had no effect on any of the parameters measured. For plants grown outdoors, our results suggest that shading plants may increase quality by reducing the growth temperature.

Free access

An evaluation of the effect of bed width (24, 28, 32, and 36 inches) on the control of a mixed population of nutsedge [yellow nutsedge (Cyperus esculentus) and purple nutsedge (C. rotundus)] was conducted with an emulsifiable concentrate formulation of a 1,3-dichloropropene (1,3-D) and chloropicrin (CP) mixture (1,3-DCP) for application through drip irrigation systems. Beds were mulched with either 1.4-mil-thick virtually impermeable film (VIF) or 0.75-mil-thick high-density polyethylene (HDPE) and 1,3-DCP was applied at 35 gal/acre by surface chemigation or via subsurface chemigation 6 inches deep within the bed. HDPE was more permeable to gaseous 1,3-D than VIF so that 1 day after treatment (DAT), 1,3-D gas concentration at the bed centers under VIF was significantly higher than under HDPE. Dissipation of 1,3-D gas with HDPE occurred within 7 DAT, but dissipation with VIF took ∼10 days. In bed centers, 1,3-D concentrations 1 DAT were in the range of 2.3 to 2.9 mg·L–1 whereas in bed shoulders concentrations ranged from 0.1 to 0.55 mg·L–1. In 2002 and 2003, 1,3-D concentration in shoulders of narrower beds was significantly higher than in the wider beds, but dissipated more rapidly than in wider beds. Lower initial 1,3-D concentrations were observed with HDPE film in shoulders than with VIF and the rate of dissipation was lower with VIF. At 14 DAT, nutsedge plants were densely distributed along bed shoulders (19 to 27 plants/m2) with little or no emergence in the centers of beds (fewer than 5 plants/m2), but with no response to bed width. Nutsedge density increased with time, but the nature of the increase differed with bed width. The most effective nutsedge suppression was achieved with 36-inch beds, which had densities of 11–13 plants/m2 on bed centers and 53 plants/m2 on bed shoulders by 90 DAT. Nutsedge suppression was initially more effective with VIF than with HDPE film, so that no nutsedge emerged in the centers of beds mulched with VIF compared with 2–7 plants/ m2 with HDPE by 14 DAT. On bed shoulders there were 2–7 plants/m2 with VIF and 32–57 plants/m2 with HDPE. Increase in nutsedge density with time was greater with VIF so that by 90 DAT nutsedge densities on bed centers and shoulders were greater than with HDPE in 2002 and the same as with HDPE in 2003. Subsurface chemigation did not consistently improve suppression of nutsedge when compared with surface chemigation. Concentrations of 1,3-D in bed shoulders irrespective of bed width were nonlethal. Initial superior nutsedge suppression with VIF did not persist. Nutsedge control in a sandy soil with 1,3-DCP chemigation is unsatisfactory with one drip-tape per bed.

Full access