Search Results

You are looking at 1 - 10 of 67 items for

  • Author or Editor: D. Scott NeSmith x
Clear All Modify Search

A new southern highbush blueberry cultivar named `Rebel' was released in 2005 by The University of Georgia. It is a very early season cultivar with large fruit having a medium to light blue color, and a small, dry picking scar. `Rebel' berry firmness is good, while flavor is only average. The new cultivar flowers 3 to 4 days before `Star' and ripens 6 to 9 days before `Star' in south and middle Georgia. `Rebel' plants are highly vigorous, very precocious and have a spreading bush habit with a medium crown. Yield has been similar to or greater than `Star' in south Georgia. Leafing has been excellent, even following mild winters. Rebel has an estimated chill requirement of 400 to 450 hours (<7 °C). Propagation is very easily accomplished using softwood cuttings. Plants of `Rebel' are self-fertile to a degree, but should be planted with other southern highbush blueberry cultivars with a similar time of bloom for cross-pollination (`Emerald' and `Star' suggested). `Rebel' is new, so planting on a trial basis is recommended. `Rebel' requires a license to propagate. For licensing information and/or a list of licensed propagators, contact the Georgia Seed Development Commission, 2420 S. Milledge Avenue, Athens, GA 30606; or visit their web-site at www.gsdc.com.

Free access

Experiments were conducted during 1999 and 2000 at Griffin, Ga., with rabbiteye blueberries (Vaccinium ashei Reade) to determine how the growth regulator CPPU affected fruit set, berry size, and yield. CPPU (applied at two different timings) was used alone, and in conjunction with GA3 on mature, field-grown `Tifblue' plants. A control treatment without either growth regulator was also included. The CPPU concentration used was 10 mg·L-1 (a single application per treatment), and the GA3 concentration used was 200 mg·L-1 (two applications per treatment). Results from both years showed a positive benefit of CPPU with respect to fruit set and berry size, especially in the absence of GA3. Depending on timing, berry number per plant was increased by more than 200% in 1999 using CPPU. Berry size increases of more than 30% occurred in 2000 when CPPU alone was applied at 17 d after flowering (DAF). CPPU did not increase berry size of GA3-treated plants in either year. Total yield per plant during 2000 was 5.0, 7.1, and 8.3 kg for control, CPPU applied 7 DAF, and CPPU applied 17 DAF treatments, respectively, without GA3. While CPPU did substantially increase fruit set, berry size, and yield of `Tifblue', there was a notable delay in fruit ripening. These results suggest that CPPU may be useful for increasing yield of rabbiteye blueberries under conditions of inadequate fruit set (such as occurs in much of the Southeast), but a delay in ripening will likely result. Chemical names used: N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU); gibberellic acid (GA3).

Free access

Different planting dates were used to study the influence of thermal time on leaf appearance rate of four summer squash (Cucurbita pepo L.) cultivars. During the first year (1991), thermal time or growing degree days (GDD) were calculated using a base temperature of 8C and a ceiling temperature of 32C for several planting dates. Leaf numbers per plant were determined every 2 to 3 days. Leaves that were beginning to unfold with a width of 2 cm or greater were included in the counts. The relationship between leaf number and GDD was established from the initial data set, and data from subsequent years were used for model validation. Results indicated that single equation could be used to predict leaf appearance of all four cultivars in response to thermal time. The response of leaf appearance to GDD was curvilinear, with a lag over the first five leaves. After five leaves, the increase in leaf number per plant was linear with increased GDD. Segmented regression with two linear functions also fit the data well. With this approach, leaf 5 was the node, and a separate linear function was used to predict the leaf number below five leaves and above five leaves. The results of this model should prove to be useful in developing a model of leaf area development, and eventually a crop growth model, for summer squash.

Free access

Research over a two year period assessed the influence of planting date and location on time to flowering and number of flowers produced for five summer squash (Cucurbita pepo L.) cultivars. Heat units (HU) were calculated using a single equation to determine if this approach could account for a significant portion of the variability in time to onset of flowering over the range of environments. Depending on cultivar and flower sex, the number of days to flowering varied as much as 20 days. There were significant cultivar differences in HU required for the onset of both staminate and pistillate flowers. The use of HU instead of days reduced the variability of time to flowering as indicated by regression analyses and mean absolute differences between predicted and observed days to flowering. The total number of staminate flowers produced was more variable than that of pistillate flowers. The ratio of pistillate-to-staminate flowers was stable for two of the five cultivars; however, pistillate flower production for those two cultivars was severely restricted during hot weather. Thus environment has a considerable influence on both the onset of flowering and the number of flowers produced for summer squash.

Free access