Search Results
An improved high-performance liquid chromatography (HPLC) method for analysis of capsaicinoids in dried Capsicum fruit powder, involving changes in extraction, mobile phase, flow rate, and excitation and emission spectra and resulting in reduced analysis time, increased sensitivity, and safety, is reported. Extraction of Capsicum fruit powder using acetonitrile proved to be the best capsaicinoid extractor in the shortest time interval. Solvents used for HPLC separation and quantification of capsaicinoids include methanol and water at 1 ml·min–1 flow rate. Instrument sensitivity is enhanced by altering the fluorescence detector excitation and emission wavelengths. Two analytical methods have been developed. One method determines total amount of heat units in 7 minutes, while the other provides total amount of heat units as well as separation of all present major and minor capsaicinoids in 20 minutes. These improved techniques provide inexpensive and rapid methods for quantitative and qualitative analysis of capsaicinoids in Capsicum fruit samples along with good sensitivity and no interference or confounding peaks.
Abstract
Data on flower characteristics and honey bee (Apis mellifera L.) foraging behavior were collected on 34 ornamental crabapple and five apple cultivars. Honey bees showed a strong fidelity to foraging on either non-white or white flowers. Nectar reward had little or no correlation to this behavior. Reflectance readings in a blue range (at 436 nm) were more closely correlated with flower-color categories than ultraviolet reflectance. Considering bee behavior and bloom timing, ‘Manchurian’, ‘Snowdrift’, and ‘Golden Hornet’ are potential ornamental crabapple pollenizers for ‘Delicious’ under Pacific Northwest conditions.
The response of bell pepper (Capsicum annuum L.) to five rates of N fertigation between 0 and 336 kg N/ha was studied at two drip-irrigated sites [Univ. of California, Davis (UCD) and West Side Field Station, Five Points (WSFS)] in California in 1992. Nitrogen application, in the form of a urea: ammonium nitrate mixture (UN-32), was applied in eight (WSFS) or 10 (UCD) equal weekly increments, beginning after transplant establishment. At both sites, fruit yield and mean fruit size peaked at 252 kg N/ha, with additional N retarding crop productivity. Maximum fruit yield was obtained by fertility treatments that maintained petiole NO3-N concentration >5000 μg·g-1 through the early fruit bulking period. Two techniques for monitoring crop N status, designed for field use, were evaluated. There was a close relationship between the NO3-N concentration of fresh petiole extracts, as measured by a portable, battery-operated nitrate selective electrode, and dry tissue analyzed by conventional laboratory technique (r2 = 0.89). Relative chlorophyll concentration, measured nondestructively by a dual-wavelength leaf absorbance meter, was poorly correlated with whole-leaf N concentration (r2 = 0.55). However, the ratio of such chlorophyll readings for a treatment compared to an in-field reference of known N sufficiency (252 kg·ha-1 treatment) showed promise as a technique for identifying N deficiency.
Stolons of `Raleigh', `Floratam', and FX-332 St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] were sampled from the field between October and March in two consecutive years to evaluate accuracy of an electrolyte leakage (EL) method for predicting freezing tolerance. Lethal temperatures of stolons estimated using EL were compared to those obtained by regrowth tests in the greenhouse. Mean lethal low temperatures for regrowth and EL methods over 12 sampling dates were `Floratam', –4.5C (regrowth) vs. –4.4C (EL); FX-332, –4.2C (regrowth) vs. –4.9C (EL); and `Raleigh', –6.0C (regrowth) vs. –5.4C (EL). A positive correlation (r = 0.81) was observed between EL-predicted and regrowth lethal temperatures for `Raleigh', which exhibited some acclimation during the first sampling year. The EL technique consistently predicted a lower lethal temperature for `Raleigh' than for `Floratam', which corroborates field observations concerning freezing tolerance of these two cultivars.
Abstract
In a 3-year study sulfur-coated urea (SCU) resulted in differences in crop response which were related to the different N release rates. On Decatur silty clay loam at Normal, Alabama, SCU with relatively high N-dissolution rates performed best in terms of yield and N uptake for turnip greens, Brassica campestris L. (Rapifera group) while SCU with a slower dissolution rate performed better on Morrison sandy loam at Tuskegee, Alabama. On cabbage, Brassica oleracea L. (Capitata group) SCUs performed similar to ammonium nitrate (AN) and uncoated urea (UCU). With tomato, Lycopersicon esculetum Mill., spring-applied SCU with the highest dissolution rate, performed as well as split applications of AN, indicating the possibility for labor saving with SCU through reduced number of applications. Effect of SCU on nitrate accumulation was minimal. At harvest in the top 15 cm soil the total N content was highest in tomato plots treated with split AN, followed by SCU-A, SCU-C, and AN, respectively.
Little is known about intraspecific variability in St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] freezing tolerance and the physiological factors that may influence survival. Stolons of field-grown `Raleigh', `Floratam', and FX-332 St. Augustinegrass were sampled between October and March in 1990 to 1991 and 1991 to 1992 to measure freezing tolerance, nonstructural carbohydrates, and water content. Stolons were exposed to temperatures between 1 and -8C in a freezer, and regrowth was evaluated in the greenhouse. Generally, freezing tolerance of `Raleigh' > `Floratam' = FX-332. `Raleigh' exhibited >60% survival in December and January, while survival of `Floratam' and FX-332 was <20%. `Raleigh' was the only cultivar that acclimated, as indicated by a 75% increase in survival between October and December 1990. Starch and sucrose were the primary storage carbohydrates extracted from stolons, but neither was correlated with freezing tolerance. A negative (r = -0.80) correlation was observed between `Raleigh' survival and stolon water content between January and March 1991. Reduced water content in `Raleigh' stolons during winter months may contribute to acclimation.
Abstract
Applications of 2-chloroethylphosphonic acid to field grown cantaloupes resulted in yellowing of leaves, early abscission, apparent ripening of immature melons and increased total and marketable yields of full-slip melons. The percentage of soluble solids was slightly lower in treated melons.
California melon (Cucumis melo) growers commonly apply calcium (Ca) fertilizers during fruit development to increase fruit firmness and improve storage life. Drip-irrigated field trials were conducted in central California in 2005 and 2006 to evaluate the efficacy of this practice on honeydew (C. melo Inodorus group) and muskmelon (C. melo Reticulatus group). In the 2005 honeydew trial, three weekly applications of 10 lb/acre Ca from calcium nitrate (CN), calcium thiosulfate (CTS), or calcium chloride (CC) were injected into the irrigation system during early melon development. In the 2006 muskmelon trial, two applications of 15 lb/acre Ca from CTS or CC were made early, or two applications of CC late, in melon development. The effect of these Ca fertigation treatments on fruit yield, soluble solids concentration, flesh firmness, and Ca concentration were compared with an untreated control receiving no Ca fertigation. Calcium fertigation had no effect on marketable yield, quality, or Ca concentration of honeydew or muskmelon fruit regardless of application timing or Ca source applied. Loss of firmness during either 2 weeks (honeydew) or 1 week (muskmelon) of postharvest storage was unrelated to Ca fertigation treatment and was not correlated with Ca concentration in fruit tissue. We conclude that under conditions representative of the California melon industry, Ca fertigation at typical application rates is ineffective in improving honeydew or muskmelon yield or fruit quality.
Field studies were conducted in 1992 and 1993 to assess the effects of irrigation with saline drainage water on processing-tomato fruit yields and quality constituents. Saline water (ECiw = 7 dS/m) was used for 66% of the seasonal irrigation requirements in 1992 and 82% in 1993. Yields of tomatoes irrigated with saline water were maintained relative to nonsaline irrigation in 1992, but were decreased by 33% in 1993. Juice Brix and Bostwick consistency were generally improved by irrigation with saline water. pH was unaffected by irrigation treatment, and titratable acidity, an estimate of citric acid content, was increased only in 1993. Calculated quantities for various marketable processed product yields reflect the dominant influence of fresh fruit yield that masked, to a large extent, whatever quality enhancements that may have derived from saline irrigation. The substantial tomato yield reduction that occurred in the second year of this study in plots irrigated with saline drainage water, the gradual surface accumulation of boron, as well as the significant salt buildup in lower portions of the crop root zone following drainage water irrigations demonstrate definitive limitations to the reuse approach and restrict options for the crops that can be grown in this system and the frequency of saline drainage reuse.
Garlic (cv California Late) was produced under four irrigation regimes (110% and 130% evapotranspiration with two water cut-off dates, 10 and 24 May 1999) in combination with three nitrogen fertilization levels (100, 250, and 400 lb total N). Bulbs were manually harvested mid-June, cured 3 weeks shaded at ambient temperatures and the outer whorl of cloves manually peeled. Samples were freeze-dried, and carbohydrate (fructan and free sugars) and alliin (substrate for alliinase activity and indicator of potential pungency) concentrations were determined by HPLC. The percent dry weight was not affected by the irrigation treatment, but was reduced with increased N rate (41.3% to 39.0%). Alliin concentrations varied from 8.3 to 13.8 mg/g DW for 110% and 130% Eto irrigation treatments. Alliin concentrations were not affected by N fertilization (average = 11.5 mg/g DW). Fructan concentrations were affected by N fertilization treatment, with the highest content (802 mg/g DW) associated with the lowest N level, and the lowest (717 mg/g DW) content in samples from the highest N rate. Sucrose concentrations increased with increased N, but glucose and fructose concentrations did not vary with N fertilization. Fructan as percent of total carbohydrate remained constant across irrigation treatments (96.6% + 0.2%) and across N fertilization treatments (96.6% + 0.3%).