Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D. M. Eissenstat x
Clear All Modify Search

The effects of elevated levels of ozone on growth, mineral nutrition and freeze resistance were studied using broadleaf-evergreen citrus and avocado trees. `Ruby Red' grapefruit (Citrus paradisi L.) trees on either Volkamer lemon (Citrus volkameriana Ten. & Pasq.) or sour orange (Citrus aurantium L.) rootstock and `Simmonds' or `Pancho' avocado trees (Persea americana Mill.) on the rootstock `Waldin' were exposed to ozone in open-top chambers for 4 mo in 1988 and in a second experiment in 1989 for 8 mo. Citrus tree growth, estimated by total leaf mass, was unaffected by ozone concentrations of 3 times ambient in either year but avocado growth was reduced by ozone concentration at 2 times ambient in 1989. All trees were well-fertilized and ozone had little effect on mineral nutrient concentrations in leaves. Freeze resistance, estimated by electrolyte leakage from leaf disks and survival of leaves, stems, and whole-plants following exposure to freezing temperatures, was often diminished in avocado and citrus at 3 times ambient ozone, but occasionally was increased at 2 times ambient. Thus, ozone can be related to shifts in freeze resistance that can occur prior to discernible growth effects.

Free access

The combined effects of O3 and acid rain on freeze resistance, growth, and mineral nutrition were studied using broadleaf-evergreen citrus and avocado trees. Using a factorial design, `Ruby red' grapefruit (Citrus paradisi L.) trees on either Volkamer lemon (Citrus volkameriana Ten. & Pasq.) or sour orange (Citrus aurantium L.) rootstock and `Pancho' avocado trees (Persea americana Mill.) on `Waldin' rootstock were exposed to O3 and acid rain for 8 months in open-top chambers under field conditions. The O3 treatments were one-third ambient (0.3X), ambient (1X), twice ambient (2X), or thrice ambient (3X). Ambient O3 concentrations averaged 39.1 nl·liter-3 over a 12-hour day. The acid rain treatments had a pH of 3.3, 4.3, or 5.3 and were applied to simulate long-term rainfall averages. In general, the effects of acid rain on growth and freeze resistance were small. Rain of high acidity (pH = 3.3) offset the negative effects of O3 on growth (total leaf mass) in avocado and grapefruit/Volkamer lemon trees. In contrast, rain of high acidity magnified the detrimental effects of O3 on electrolyte leakage of leaf disks at subzero temperatures, especially for citrus. Freeze resistance, determined by stem and whole-plant survival following freezing temperatures, was lower in the most rapidly growing trees. Consequently, for trees exposed to a combination of O3 and acidic rain, leaf electrolyte leakage did not correlate significantly with stem survival of freezing temperatures. We conclude that the danger of acid rain to citrus and avocado in Florida is rather slight and would only present a potential problem in the presence of extremely high O3.

Free access