Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: D. Goldhamer x
Clear All Modify Search

During this three year study, irrigation water was withheld from trees in a commercial drip irrigated french prune orchard (Butte County, CA), during different periods within the double sigmoid fruit growth pattern (stage I - III), and postharvest. Tree water stress associated with early season water deprivation was minimal, due to the presence of stored soil moisture and low evaporative demands. For mid and late season water deprivation there was no fruit growth stage that was particularly sensitive to water stress, although severe and prolonged stress caused smaller fruit with lower quality. For the three year average, irrigation treatments caused no statistically significant effects on fruit set or drop relative to the control, however most of the stress treatments increased return bloom relative to the control, resulting in higher fruit loads and higher yields. These results suggest that moderate water stress may enhance economic prune productivity.

Free access

Variable lengths of water deprivation immediately prior to harvest were imposed on mature French prune trees for four consecutive years. Irrigation cutoff durations were about 45, 37, 30, 22, 17 and 12 days prior to harvest during 1986-89.

Predawn leaf water potential best reflected water deprivation length and reached minimum values of about -1.5 MPa with the most severe cutoff. Magnitude of peak stomatal conductance was reduced and occurred earlier in the day with longer cutoff regimes.

Rate and time-course development of preharvest fruit drop was variable from year-to-year, but there were no significant differences in total drop between cutoff treatments. Only in the fourth year, following three years of no difference were tree fruit load and yield significantly reduced but then only with the most severe cutoff. Soluble solids were higher and drying ratios lower with the longer cutoffs. Fruit size was significantly reduced in the third year of the experiment. Trunk circumferences were significantly lower only with trees subjected to the longer cutoff regimes.

Free access

Seasonal patterns of soil water content and diurnal leaf water potential (LWP), stomatal conductance(gs), and net CO2 assimilation (A) were determined in a high-density peach [Prunus persica(L) Batsch cv. Cal Red] subjected to regulated deficit irrigation scheduling. The regulated deficit irrigation treatment caused clear differences in soil water content and predawn LWP relative to control irrigation treatments. Treatment differences in midday LWP, gs, and A were also significant, but not as distinct as differences in predawn LWP. Leaves on trees subject of the deficit irrigation treatment were photosynthetically more water-use-efficient during the latter part of the stress period than were the nonstressed trees. Midday LWP and gs, on trees that received the regulated deficit irrigation treatment did not recover to control treatment values until more than 3 weeks after full irrigation was resumed at the beginning of state III of fruit growth, because of water infiltration problems in the dry soil caused by the deficit irrigation. The regulated deficit irrigation treatment caused only a 8% reduction in trunk growth relative to the control, but resulted in a 40% savings in irrigation requirements.

Free access

Prunes trees are believed to be relatively tolerant of water stress, and because prune fruit are dried, a low fresh to dry weight ratio of the fruit will reduce energy requirements for fruit drying and will represent an economic benefit to the grower. In previous research, we found that, under some orchard conditions, irrigation deprivation was associated with a number of economically beneficial effects, including a lower fresh to dry weight ratio of the fruit, increased return bloom, and final saleable crop yield. Analysis of these results was complicated by the effects of irrigation on alternate bearing, and the fact that tree water stress could be substantially different under different soil conditions for the same level of irrigation deprivation. Taking these factors into account, however, indicated that economic yield in prune could be maintained or increased by managing trees at a moderate level of water stress. An experiment was established to determine whether midday stem water potential could be used to guide irrigation and achieve a target level of water stress during the growing season, and whether a moderate level of water stress would be economically beneficial to prune production. By managing prune trees at a moderate level of water stress (midday stem water potential reaching about –1.5 Mpa by the end of the season) over 3 years, an average savings of 40% in applied irrigation water was obtained. Modest increases in return bloom, and an improved fruit dry to fresh weight ratio, occurred in moderately water stressed trees, although overall yield was not changed. The substantial savings in water, without reducing yield, should represent a net economic benefit to growers, depending on the price they pay for water.

Free access

The sensitivity of French prune (Prunus domestica L. syn. `Petite d'Agen') to water deprivation at various fruit growth stages was studied over 3 years in a drip-irrigated orchard. The soil was a poorly drained Rocklin fine sandy loam with a hardpan that varied from 4.75 to I m from the surface at the northern end of the orchard (shallow soil condition) to no hardpan apparent to 2 m below the surface at the southern end of the orchard (deep soil condition). Water deprivation during a) the first exponential phase of fruit growth or stage I, b) lag phase of fruit growth or stage II, c) first half of stage II, d) second half of stage II, e) second exponential fruit growth phase or stage III, and f) postharvest was compared to a fully watered control. Water deprivation caused the most severe reduction in tree water status when it was imposed over longer periods of time and during periods of high evaporative demand and also had mm-e severe effects under shallow soil conditions. Compared to the control treatment, deprivation during all of stage II (the most severe deprivation treatment) was associated with increased Ilowering, reduced fruit hydration ratio, and smaller fruit size under all soil conditions. Under deep soil conditions, deprivation during all of stage II resulted in increased return bloom, which was reflected in higher fruit loads and dry t-ha-' fruit yield. However, under shallow soil conditions, even though return bloom was increased with this treatment, fruit loads and dry t·ha-1 fruit yields were the lowest of all treatments. These differences in treatment effects in shallow vs. deep soil conditions were most likely the result of increased fruit drop, which occurred under shallow soil conditions as a result of rapid onset and increased severity ofstress. Treatments that had parallel effects in shallow and deep soil conditions resulted in statistically significant overall treatment effects, while those that had opposing effects in shallow vs. deep soil conditions did not show significant overall treatment effects. Substantial alternate hearing occurred, and, in general, dry fruit yields above ≈9 dry t·ha-1 resulted in a decrease in fruit load the following year, while loads below this value showed a subsequent increase. Based on a separate estimate of the theoretically stable value for each treatment, all deprivation treatments resulted in a higher sustainable fruit load compared to the fully irrigated control. This suggests that, for the purpose of prune fruit production, there may be an optimal level of tree water stress.

Free access

To be useful for indicating plant water needs, any measure of plant stress should be closely related to some of the known short- and medium-term plant stress responses, such as stomatal closure and reduced rates of expansive growth. Midday stem water potential has proven to be a useful index of stress in a number of fruit tree species. Day-to-day fluctuations in stem water potential under well-irrigated conditions are well correlated with midday vapor-pressure deficit, and, hence, a nonstressed baseline can be predicted. Measuring stem water potential helped explain the results of a 3-year deficit irrigation study in mature prunes, which showed that deficit irrigation could have either positive or negative impacts on tree productivity, depending on soil conditions. Mild to moderate water stress was economically beneficial. In almond, stem water potential was closely related to overall tree growth as measured by increases in trunk cross-sectional area. In cherry, stem water potential was correlated with leaf stomatal conductance and rates of shoot growth, with shoot growth essentially stopping once stem water potential dropped to between −1.5 to −1.7 MPa. In pear, fruit size and other fruit quality attributes (soluble solids, color) were all closely associated with stem water potential. In many of these field studies, systematic tree-to-tree differences in water status were large enough to obscure irrigation treatment effects. Hence, in the absence of a plant-based measure of water stress, it may be difficult to determine whether the lack of an irrigation treatment effect indicates the lack of a physiological response to plant water status, or rather is due to treatment ineffectiveness in influencing plant water status. These data indicate that stem water potential can be used to quantify stress reliably and guide irrigation decisions on a site-specific basis.

Full access