Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: D. Bradley Rowe x
Clear All Modify Search
Author:

Accelerating growth of nursery stock can produce marketable plants in less time, thus potentially increasing profits. The primary objective of this study was to compare adventitious rooting and initial growth of cuttings of three perennials species in response to slow-release fertilizer incorporated into the propagation media. The experiment was a split-plot consisting of four blocks, nine nutrient treatments, three species, and four cuttings per replication within each block-nutrient, species treatment. Treatments consisted of Nutricote 13-13-13 Type 180 and Nutricote 18-6-8 Type 180 incorporated into the rooting media, each at 3, 6, 9, and 12 g·L-1, and a control with no Nutricote. Species studied were Artemisia ludoviciana `Valerie Finnis', Gaura lindheimeri `Whirling Butterflies', and Nepeta ×faassenii `Six Hills Giant'. There were of 144 cuttings per species for a total of 432 cuttings. Fertilizer treatments did not influence rooting percentage, and no significant differences were found between the two formulations of fertilizer for top growth, root growth, rooting percentage, or root number. However, regardless of formulation or rate, the eight fertilizer treatments resulted in greater top and root dry weights when compared to the control. Top and root dry weight increased linearly within both fertilizer formulations.

Free access

Propagation failures of Taxus are often attributed to cutting collection from stock plants of poor quality. If a quick, reliable method of determining the potential rooting of cuttings based on the condition of a specific stock plant was available for propagators, rooting success could be predicted before investing time, labor, and resources. Our studies examined chlorophyll fluorescence (Fv/Fm) as a potential tool for stock plant selection, assessment of storage conditions, and measurement of stress over the course of propagation. Ten cultivars of Taxus × media (Taxus baccata L. × T. cuspidata Sieb. & Zucc.) were used: Brownii, Dark Green Pyramidalis, Dark Green Spreader, Densiformis, Densiformis Gem, Hicksii, L.C. Bobbink, Runyan, Tauntoni, and Wardii. Storage condition treatments consisted of desiccation (low, medium, and high), duration (34, 70, and 107 days), and temperature (–30, –2.5, 0, 2.5, 5, 10, and 20 °C). Cultivars differed in Fv/Fm initially as well as over time. Correlations were not found between initial stock plant Fv/Fm and rooting percentage, number of roots, root dry weight, or root length, indicating that Fv/Fm is not a reliable indicator of stock plant propagation potential. Short storage duration at –2.5 to 2.5 °C was found to be ideal. Fv/Fm could detect substandard storage conditions only at temperature and desiccation extremes. Although chlorophyll fluorescence measurements do not appear to be a practical method of predicting adventitious rooting, there is a potential for assessing cutting or plant quality before shipping.

Free access

As forests, agricultural fields, and suburban and urban lands are replaced with impervious surfaces resulting from development, the necessity to recover green space is becoming increasingly critical to maintain environmental quality. Vegetated or green roofs are one potential remedy for this problem. Establishing plant material on rooftops provides numerous ecological and economic benefits, including stormwater management, energy conservation, mitigation of the urban heat island effect, and increased longevity of roofing membranes, as well as providing a more aesthetically pleasing environment in which to work and live. Furthermore, the construction and maintenance of green roofs provide business opportunities for nurseries, landscape contractors, irrigation specialists, and other green industry members while addressing the issues of environmental stewardship. This paper is a review of current knowledge regarding the benefits of green roofs, plant selection and culture, and barriers to their acceptance in the United States. Because of building weight restrictions and costs, shallow-substrate extensive roofs are much more common than deeper intensive roofs. Therefore, the focus of this review is primarily on extensive green roofs.

Free access

Because the waterproofing membrane beneath green roofs is estimated to last at least 45 years, long-term plant performance beyond initial establishment is critical. Plants that survive initially on a green roof may not exist in the long term because of variability in climate and other factors. This study evaluated the effect of green roof substrate depth on substrate moisture, plant stress as measured by chlorophyll fluorescence, and plant community development and survival of 12 Sedum species over 4 years in a midwestern U.S. climate during 4 years of growth. Plugs of 12 species of Sedum were planted on 8 June 2005 and evaluated biweekly for absolute cover (AC). Most species exhibited greater growth and coverage at a substrate depth of 7.0 cm and 10.0 cm relative to 4.0 cm. For the species evaluated, substrate depths of at least 7.0 cm are highly recommended. AC of Sedum was significantly greater at this substrate depth than at 4.0 cm. Mean volumetric moisture content of the three substrate depths followed the same pattern as AC. When averaged over time, the 4.0-cm substrate depth held less moisture than depths of 7.0 or 10.0 cm, whereas the 7.0- and 10.0-cm substrate depths were statistically the same. Species exhibiting the greatest AC at all substrate depths were S. floriferum, S. sexangulare, S. spurium ‘John Creech’, and S. stefco. In general, species that are less suitable at these substrate depths are S. ‘Angelina’, S. cauticola ‘Lidakense’, S. ewersii, S. ochroleucum, and S. reflexum ‘Blue Spruce’.

Free access

Although the economic, environmental, and aesthetic benefits of green roofs have been recognized for decades, research quantifying these benefits has been limited—particularly in the U.S. Green roof usage and research is most prevalent in Germany, but can also be seen in several other European countries and Canada. If green roof installations are to be successful in Michigan and the rest of the U.S., then a better understanding of what specific taxa will survive and thrive under harsh rooftop conditions in this geographic area is required. Nine simulated rooftop platforms containing three commercially available drainage systems were installed at Michigan State University. Eighteen Michigan native plants planted as plugs and nine Sedum spp. planted as either seed or plugs were evaluated over three years for growth, survival during both establishment and overwintering, and visual appearance. All Sedum spp. tested were found to be suitable for use on Midwestern green roofs. Of the eighteen native plant taxa tested, Allium cernuum L., Coreopsis lanceolata L., Opuntia humifosa Raf., and Tradescantia ohiensis L. are suitable for use on unirrigated extensive green roofs in Michigan. If irrigation is available, then other native species are potential selections.

Free access

Chlorophyll fluorescence over the course of stem cutting propagation was examined in 10 cultivars of Taxus ×media (Taxus baccata L. × T. cuspidata Sieb. & Zucc.), including `Brownii', `Dark Green Pyramidalis', `Dark Green Spreader', `Densiformis', `Densiformis Gem', `Hicksii', `L.C. Bobbink', `Runyan', `Tauntoni', and `Wardii'. The fluorescence value measured was the ratio of variable over maximum chlorophyll fluorescence (Fv/Fm). This value reflects the maximum dark-adapted photochemical efficiency of photosystem II (PSII) reaction centers involved in photosynthesis and is an indirect measure of plant stress. The objective of this study was to examine Fv/Fm as a method for stock plant selection and for monitoring rooting progress of various cultivars. Fv/Fm varied significantly (P ≤ 0.05) among cultivars, initially and over time. However, there was significant overlap among some cultivars. The Fv/Fm decreased dramatically during cold storage, but usually returned to original levels after several weeks in the propagation beds. This appeared to be a reflection of the reduction of water stress as the cuttings formed roots. Initial stock plant Fv/Fm was not correlated (P ≤ 0.05) with rooting percentage, root number, root dry weight, or root length, indicating that Fv/Fm is not a reliable indicator of stock plant rooting potential. Visual assessment is just as reliable.

Free access

Hedged stock plants of four full-sib families [27-2 × 27-5, 27-3 × 27-1, 27-2 × 27-1, and 27-6 × 27-1 (designated B, G, R, and W)] of loblolly pine (Pinus taeda L.) were fertilized daily with a complete nutrient solution containing N at 10, 25, 40, 55, or 70 mg·L–1. In May, terminal softwood stem cuttings were taken and placed under intermittent mist. Families were combined to form composite poor-rooting (BR) and good-rooting (GW) families. At 0, 3, 6, 9, and 12 weeks after sticking, cuttings were evaluated for rooting and analyzed for mineral nutrient and carbohydrate content. Percent rooting by week 12 for cuttings from stock plants receiving N between 25 to 70 mg·L–1 was 28% to 33%, whereas significantly fewer (17%) cuttings from plants receiving 10 mg·L–1 had rooted. By week 12, 98% of cuttings taken from stock plants receiving N at 10 mg·L–1 were alive, while significantly fewer (81% and 82%) of the more succulent cuttings receiving 55 and 70 mg·L–1, respectively, had survived. Nearly all increases in cutting height occurred within the first 3 weeks. In contrast, top dry weight increased steadily throughout the experiment. There were no significant differences in rooting between the two composite families until week 12, when 32% of cuttings from family GW had rooted compared with 24% for family BR. Survival of cuttings was greater for the poor-rooting family (BR) (94%) than for the good-rooting family (GW) (82%) after 12 weeks. Levels of total nonstructural carbohydrates (TNC) and individual soluble sugars were initially higher in cuttings taken from stock plants that received higher rates of N, whereas the reverse was true for starch content. With the exception of sucrose, content of TNC and soluble carbohydrates generally increased over time. Starch was nearly depleted by week 3, but had increased by weeks 6 and 9. No correlation was found between TNC: N ratios and rooting percentage. Family GW contained greater quantities of myo-inositol, glucose, fructose, sucrose, total soluble carbohydrates (TSC), and TNC than did family BR. Mineral nutrient content was generally greater in cuttings taken from stock plants that received higher rates of N; these cuttings also maintained higher levels throughout the 12-week rooting period. As with the soluble carbohydrates, the good-rooting composite family (GW) contained greater amounts of all mineral nutrients than did the poor-rooting family BR.

Free access

Green roofs, or vegetative or living roofs, are an emerging technology in the United States. Because environmental conditions are often more extreme on rooftops, many xerophytic plants, especially Sedum, are ideal for extensive green roofs because they are physiologically and morphologically adapted to withstand drought. A greenhouse experiment was conducted to determine the effect of watering regimens on plant stress as measured by chlorophyll fluorescence (Fv/Fm), biomass accumulation, substrate moisture, and evapotransipiration on succulent plants of Sedum acre L., S. reflexum L., S. kamtschaticum ellacombianum Fisch., and non-Crassulacean acid metabolism (CAM) plants of Schizachyrium scoparium Nash and Coreopsis lanceolata L. Plants were grown at a substrate depth of 7.5 cm. Results indicate even after the 4-month period, Sedum spp. survived and maintained active photosynthetic metabolism to a greater extent than Schizachyrium and Coreopsis. Furthermore, when Sedum was watered after 28 days of drought, chlorophyll fluorescence (Fv/Fm) values recovered to values characteristic of the 2 days between watering (DBW) treatment. In contrast, the non-CAM plants required watering frequency every other day to survive and maintain active growth and development. Regardless of species, the greatest increase in total biomass accumulation and fastest growth occurred under the 2 DBW regimens.

Free access

Catawba rhododendron (Rhododendron catawbiense Michx.) seedlings of two provenances, Johnston County, N.C. (35°45′N, 78°12′W, elevation = 67 m), and Yancey County, N.C. (35°45′N, 82°16′W, elevation = 1954 m), were grown in controlled-environment chambers for 18 weeks with days at 18, 22, 26, or 30C in factorial combination with nights at 14, 18, 22, or 26C. Shoot and root dry weights and total leaf areas of seedlings of the Yancey County provenance (high elevation) exceeded (P ≤ 0.05) those of the Johnston County (low elevation) provenance at all temperature combinations. Leaf area was maximal at 22/22C, 18/26C, and 22/26C and minimal at 30/14C (day/night). Shoot dry weight responded similarly. Root dry weight decreased linearly with increasing day temperature, but showed a quadratic response to night temperature. Leaf weight ratio (leaf dry weight: total plant dry weight) increased, while root weight ratio (root dry weight: total plant dry weight) decreased with increasing day temperature. Leaf weight ratio was consistently higher than either stem or root weight ratios. Day/night cycles of 22 to 26/22C appear optimal for seedling growth.

Free access

Because of greater interest in green roofs in the United States, it is critical to increase the number and geographic range of proven plant resources for long-term survival on rooftops. Successful plant taxa for extensive green roofs must establish themselves quickly, provide high groundcover density, and tolerate extreme environmental conditions. Furthermore, dead load weight restrictions on many buildings may limit the substrate depth that can be applied. The objective of this study was to evaluate the effect of substrate depth on initial establishment and survival of 25 succulent plant taxa for green roof applications in the midwestern United States. Survival, initial growth, and rate of coverage were compared for plants grown in three substrate depths (2.5, 5.0, and 7.5 cm) on 24 roof platforms. Plant coverage was determined from image analysis of weekly digital photographs. Results indicate deeper substrates promote greater survival and growth; however, in the shallowest depth of 2.5 cm, several species continued to persist. Of the 25 species initially planted, only 47% survived in the deepest substrate of 7.5 cm. Recommended species at the depths tested for climates similar to southern Michigan include Phedimus spurious Raf. ‘Leningrad White’, Sedum acre L., S. album L. ‘Bella d'Inverno’, S. middendorffianum L., S. reflexum L., S. sediforme J., and S. spurium Bieb. ‘Summer Glory’. Subsidiary species that are present at specific substrate depths but may not exhibit an ability to cover large areas include S. dasyphyllum L. ‘Burnatii’, S. dasyphyllum L. ‘Lilac Mound’, S. diffusum W., S. hispanicum L., and S. kamtschaticum Fisch. The primary deterrent for these subsidiary species was little to no survival at 2.5 cm. Deeper substrates promoted greater survival and growth for nearly all species tested.

Free access