Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Crysta N. Harris x
Clear All Modify Search

The overall goal was to evaluate fertilizer options for greenhouse producers, with or without a plant growth regulator (PGR) application, to improve subsequent performance of container-grown annuals. Petunia (Petunia × hybrida) was the model container-grown crop in simulated production and consumer environments. The first experiment at two locations (New Hampshire and Florida) compared strategies using water-soluble fertilizer [WSF (17N–1.8P–14.1K)], controlled-release fertilizers (CRF), and slow-release fertilizers (SRF) that were either applied throughout or at the end of the 8-week production phase [point of shipping (POS)] for petunia rooted cuttings grown in 8-inch azalea containers. In the subsequent simulated “consumer” phase, container plants were irrigated with clear water (no fertilizer) for 6 weeks. Plant performance [number of flowers, SPAD chlorophyll index, dry weight, and tissue nitrogen (N)] at the end of the consumer phase was improved by top-dressing at POS with either CRF or granular organic fertilizer (both at 2.74 g/container N), or preplant incorporation of either a typical CRF at 4.12 g/container N or a CRF with an additional prill coating to delay initial release (DCT) at 2.74 g/container. There was no carry-over benefit from applying a liquid urea-chain product (1.37 or 2.74 g/container N) or top dressing with granular methylene di-urea (2.74 g/container N), or 400 mg·L–1 N (0.2 g/container N) from a liquid organic fertilizer at POS. The consumer benefit of applying 400 mg·L–1 N (0.2 g/container N) from a WSF at POS was increased by supplementing with 235 mg·L–1 magnesium (Mg) and 10 mg·L–1 iron (Fe). A second experiment in 10-inch-diameter pots evaluated the effect on consumer performance from providing 200 or 400 mg·L–1 N of WSF with the PGR paclobutrazol, at the final 1 L/pot irrigation at POS. Application of 3 mg·L–1 paclobutrazol delayed leaf yellowing and reduced plant height, width, and shoot dry weight during the consumer phase, resulting in a more compact growth habit and higher plant quality compared with plants that received no PGR, regardless of WSF treatment. Addition of supplemental 235 mg·L–1 Mg and 10 mg·L–1 Fe to the high rate of WSF and PGR did not improve consumer performance compared with other treatments that included a PGR. Overall, the first experiment demonstrated that the most effective fertilizer strategies require a CRF or SRF that will release nutrients throughout the consumer phase, and that impact of liquid fertilizer options is limited because of lower N supply per container. A single application at POS of a high rate of WSF with supplemental Mg and Fe may have short-term benefits, for example while plants are in a retail environment. Growers should consider combining a residual fertilizer with a PGR application for premium, value-added container annuals.

Open Access

Pine (Pinus sp.) wood products have potential to immobilize fertilizer nitrogen (N) and influence plant growth when used in soilless substrates for the production of containerized floriculture crops. Peat substrate was amended with (by volume) 30% pine wood fiber (peat:fiber) during a production phase with fertigation and a simulated consumer retail phase with clear-water irrigation using container-grown ‘Supertunia Vista Bubblegum’ petunia (Petunia ×hybrida). The objective was to evaluate substrate effects on substrate and plant tissue nutrient level and plant growth, with an emphasis on evaluating N immobilization from wood product amendments. Substrates consisting of peat amended with hammer-milled pine wood (peat:wood) or coconut (Cocos nucifera) coir (peat:coir) were used for comparison, and a 100% peat substrate (peat) served as a control. In Expt. 1, amending peat with pine wood fiber had no effect on leaf SPAD chlorophyll index, shoot growth, plant height and width, substrate N, or percent shoot tissue N at the end-of-production. In Expt. 2, plants grown in peat:fiber had reduced flower number, plant height and width, and shoot growth compared with plants grown in the 100% peat control. However, petunia grown in peat:fiber substrates maintained dark-green foliage with high leaf SPAD chlorophyll index values (≥44.4) and ≥45 flowers/plant, and therefore were considered marketable plants. During the production phase in both Expts. 1 and 2, N concentrations remained within the target range for petunia in both the shoot tissue and root-zone for all substrates. In addition, there was no statistical evidence of N immobilization for any substrate blend for either of the N drawdown procedures. In both Expts. 1 and 2, root-zone nutrients became depleted during the consumer phase when irrigation was with clear water (no fertilizer), and petunia developed uniform symptoms of leaf chlorosis and N deficiency. Results of this study indicate that peat amended with 30% pine wood fiber, hammer-milled pine wood, and coconut can be used for production of containerized petunia with minimal effects on plant growth or need to adjust the fertilizer program. However, increasing pine wood to >30% of the substrate volume may require growers to increase fertilization and adjust irrigation practices to compensate for greater risk of N immobilization and changes in substrate physical properties.

Open Access