Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Craig Dilley x
  • All content x
Clear All Modify Search
Free access

Craig Dilley and Gail Nonnecke

Sustainable strawberry production depends on effective weed and soil management. Alternative weed management strategies are needed because few herbicides are registered for use in matted-row strawberry culture. Soil analyses are often measured in terms of chemical and physical properties alone. Measuring biological indicators of soil quality that are sensitive to changes in the environment can enhance these analyses. The experiment compared the effects of four weed management systems on weed growth, soil quality properties, and strawberry yield, growth, and development. Treatments were killed-cover crop mixture of hairy vetch (Viciavillosa) and cereal rye (Secalecereale); compost + corn gluten meal + straw mulch; conventional herbicide; and methyl bromide soil fumigation. Results indicated that there were no differences in percentage of weed cover or number of strawberry runners between the four weed management treatments in the planting year (July or Aug. 2004). The soil quality parameters, infiltration rate, soil bulk density, earthworm number, and total porosity were similar for all treatments. Plots that received the straw mulch treatment had a soil volumetric water content 20% higher and air-filled porosity that was 26% higher than the average of other treatments. Although treatment plots received similar N, leaf nutrient analysis showed that plants receiving the straw mulch + corn gluten meal treatment had a similar amount of total N when compared to the conventional and methyl bromide treatments, but was 21% higher than the killed-cover crop treatment.

Free access

Craig A. Dilley, Gail R. Nonnecke, and Nick E. Christians

Corn gluten meal (CGM), a by-product of corn wet-milling, has weed control properties and is a N source. The weed control properties of CGM have been identified in previous studies. The hydrolysate is a water soluble, concentrated extract of CGM that contains between 10% to 14% N. Our objective was to investigate corn gluten hydrolysate as a weed control product and N source in `Jewel' strawberry production. The field experiment was a randomized complete block with a factorial arrangement of treatments with four replications. Treatments included application of granular CGM, CGM hydrolysate, urea, urea and DCPA (Dacthal), and a control (no application). Granular CGM and urea were incorporated into the soil at a depth of 2.5 cm with N at 0, 29, 59, and 88 g/plot. Plot size was 1 × 3 m. Percent weed cover data on 12 Aug. showed plots receiving the 29 g N from CGM hydrolysate had 48% less weed cover than the control (0 g). Plant growth variables showed similar numbers of runners and runner plants among all nitrogen sources.

Free access

Craig A. Dilley, Gail R. Nonnecke, and Nick E. Christians

The number of herbicides available for use in strawberry (Fragaria×ananassa Duch.) production is limited. Corn gluten hydrolysate (CGH) is a water-soluble extract of corn gluten meal (CGM), a by-product of corn wet-milling. Both CGH and CGM have been shown to inhibit root development of seedlings and can provide nitrogen (N). Four weed control and/or N- containing products were studied: CGH, CGM, urea (46N-0P-0K), and urea applied with DCPA at 8.4 kg·ha-1 a.i. Treatments were applied at N rates of 0, 9.8, 19.5, and 29.3 g·m-2. The 0 g·m-2 of N treatment served as the control. During the 1995 establishment season, all treatments were applied in June, July, and August. Treatments were applied in July and August during the 1996, 1997, and 1998 growing seasons. Dicot and monocot weed number and weed shoot dry weights were determined ≈30 days after both July and August treatments. Strawberry yield data were collected in June. Leaf N data were collected during the first week of July, before renovation. When CGH was applied in July, dicot weed number in August decreased in one of four years, but CGH never affected the number of monocot weeds. CGM application in July, reduced the number of dicot weeds found in plots in Aug. 1995 and 1998. Urea had no effect on dicot weed number from 1995 to 1997. However, in 1998, dicot weed number was reduced by as much as 79% as the rate of urea increased. In all study years, dicot weed number was reduced between 86% and 97%, for the high rate of DCPA + urea, compared with control plots. With few exceptions, rate of N had no effect on leaf N or yield. CGH exhibited limited potential as a natural weed control product; it reduced dicot weed number in one year, but did not affect the number of monocot weeds in any year. Strawberry yield in plots receiving CGH showed a linear increase in one year (1998), but did not show an increase in the other 2 years. Chemical name used: dimethyl tetrachloroterephthalate (DCPA)

Free access

Craig A. Dilley, Gail R. Nonnecke, and Nick E. Christians

Alternative approaches to strawberry production that rely on cultural practices, biological controls, or natural products to reduce or replace off-farm chemical inputs are needed. Driving this growing interest are environmental concerns and rising production costs. Corn gluten meal (CGM), a byproduct of corn wet-milling, has weed-control properties and is a N source. The weed control properties of CGM have been identified in previous studies. The hydrolysate is a water-soluble, concentrated extract of CGM that contains between 10% to 14% N. Our objective was to investigate corn gluten hydrolysate as a weed control product and N source in `Jewel' strawberry production. The field experiment was a randomized complete block with a factorial arrangement of treatments and four replications. Treatments included application of granular CGM, CGM hydrolysate, urea, urea, and DCPA (Dacthal), and a control (no application). Granular CGM and urea were incorporated into the soil at a depth of 2.5 cm at rates of 0, 29, 59, and 88 g N/plot. Plot size was 1 × 3 m. The field experiment was conducted from 1995-1998. The source of nitrogen showed few effects for all variables measuring yield and weed control for all years. In general, the rate of nitrogen had little or no effect on total yield. However, the rate of nitrogen at 88 g N/plot showed an increase in average berry weight, leaf area, leaf dry weight, and weed control.