Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Corinne M. Radatz x
Clear All Modify Search

Haploid (2x) roses derived from modern tetraploid breeding lines would allow for crosses to diploid species at the diploid level. In addition, inheritance studies are easier at the diploid level, using diploids derived from tetraploids possessing economically important traits. Haploidization of 4x roses through anther culture has not been successful due to challenges in callus induction and shoot regeneration. This study investigates rose anther responses to recently reported methods that optimize in vitro adventitious shoot regeneration in rose leaves. Anthers of three cultivars (Akito, Grand Gala, and Orlando) were put in a two-step callus induction (CI) and shoot regeneration procedure with varying CI factors. Experiment one (E1) compared continuous light/dark and silver nitrate (0,30,60 mg·L-1) and experiment two (E2) used the optimal E1 treatment comparing two and four weeks on CI media. Twenty-five anthers per treatment per cultivar were used in E1 and n = 100 for E2. Although no adventitious shoots were generated, callus formed on anther tissue and frequency of formation was variable across treatments. Continuous light resulted in 100% lethality. Darkness and silver nitrate (30 or 60 μm) favored callus generation and significant differences for callus generation were found among cultivars. Darkness and 30 μm silver nitrate were used in E2. Two and four weeks on initiation media were not significantly different for generation of anther-derived callus. Identification of factors which optimize callus formation on rose anthers is a positive step toward reliably generating rose haploids.

Free access