Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Colleen Kennedy x
Clear All Modify Search

Wild Fragaria supercore accessions from the U.S. Department of Agriculture (USDA) National Plant Germplasm System collection have been evaluated in temperate climates; however, there have been no characterizations of supercore accessions in non-temperate climates or in annualized production systems. Because Florida can serve as a model system for annualized winter and spring production worldwide, the objective of this study was to characterize an elite group of wild strawberry accessions under field and high tunnel production systems for mortality and the phenological responses of flowering and runner production. The wild accessions along with cultivars were planted in open-field and high tunnel production environments in a randomized complete block design within each environment with raised beds serving as blocks. Four replications of five-plant plots were planted in each of two environments in 2 separate years. With the exception of Darrow 72, F. chiloensis accessions did not perform well in the minimum-chill annualized winter production system. The accessions of this species generally did not flower and were prolific instead in runner production. The F. virginiana accessions performed better with F. virginiana subsps. grayana and virginiana accessions appearing more adapted for minimum-chill winter production because they flowered well and had few runners. We conclude that NC 96-48-1 (PI 612324), NC 95-21-1 (PI 612569), Darrow 72 (PI 236579), and RH 30 (PI 612499) would be attractive for inclusion in germplasm development in a minimal-chill, winter annual production system. In addition to producing many flowers and few runners, these accessions had low mortality.

Free access

Powdery mildew (PM) of strawberry (Fragaria sp.) is a ubiquitous, wind-spread disease caused by the obligate parasite Podosphaera aphanis. To control PM, multiple fungicide applications are necessary each season, and none of the major cultivars in Florida have high levels of resistance. Therefore, the objectives of this study were to observe the response to selection and to estimate genetic parameters for PM and related traits in the University of Florida breeding population. In 2010, clonally replicated individuals from seven biparental crosses arising from 11 parents were included in a field trial in which clonally replicated seedlings were evaluated visually for percent coverage of PM mycelium using a modified Horsfall-Barratt scale of 0 to 6. Broad- (H2) and narrow-sense (h2) heritabilities for PM score were (mean ± se) 0.50 ± 0.08 and 0.40 ± 0.39, respectively, for the base population. After the second round of selection in the resistant population, no additive variance was detected, indicating that alleles for PM resistance had become fixed. In contrast, after two rounds of divergent selection in the susceptible population, there remained considerable additive variance (h2 = 0.42 ± 0.65). Moderate to high heritability estimates and a clear response to selection indicate that resistance to PM is genetically controlled through mostly additive effects. Selection of parents based on field trials with natural inoculum should result in good progress toward more resistant cultivars. The consistently moderate to strong genotypic and genetic correlations among PM and canopy density (CD) indicate that selection for PM resistance will result in reduced CD. Therefore, CD must be monitored over successive rounds of selection for low levels of PM to prevent CD falling below the commercially acceptable range.

Free access

Many breeders have turned to wild relatives in search of beneficial traits such as disease resistance. In strawberry, the wild octoploid species Fragaria virginiana and F. chiloensis are fully interfertile with the cultivated species, F. ×ananassa, and are therefore potential sources of resistance. Powdery mildew may increase in economic importance in Florida in the near future as a result of the use of high tunnels and rowcovers for freeze protection, which limit free water and provide a favorable environment for disease development. The objective of this study was to screen an elite group of wild strawberry accessions for resistance to powdery mildew under two production systems. In 2010–11 and 2012–13, wild accessions, commercial standard cultivars, and susceptible controls were planted in open-field and high tunnel environments at the Gulf Coast Research and Education Center in Balm, FL. Although there was a significant year × genotype effect, some taxa showed high levels of resistance that were consistent across years. There was a high correlation for ratings of powdery mildew between the high tunnel and the open field for all genotypes (r = 0.89, P < 0.001). This information may be useful for breeders, because sources of resistance to powdery mildew are available within the tested genotypes. However, some accessions are highly susceptible to powdery mildew, and this must be considered when using these genotypes in breeding programs.

Free access