Search Results
Abstract
Urban pest management is a “can of worms.” Depending upon who is asked, it may encompass all forms of pests in an urban environment, it may be biological control of insects in an urban area, or rodent and insect control in an inner-city area.
SpinOut is a commercial product containing copper hydroxide that is designed to prevent the development of circling roots in container grown ornamentals. Our objective was to determine the effect of two root-inhibiting herbicides (oryzalin and trifluralin) on the development of circling roots in container grown ornamentals when painted onto the inside surface of the containers or on stakes inserted around the walls of the containers. Rooted cuttings of wintercreeper euonymus (Euonymus fortunei Hand.-Mezz) were planted in a 1 peat: 1 perlite: 1 soil mix on 8 to 10 Feb. 1995. There were 16 containers for each of 20 treatments. Eight were rated for circling roots then harvested 17 to 22 May, and eight were rated and harvested 6 to 7 July 1995. Root circling was rated on a scale of 1 to 5, with 1 indicating no circling roots and 5 indicating many circling roots. Following harvest stem growth was measured and the dry weights of the roots, stems, and leaves were determined. Treated stakes did not prevent circling roots Trifluralin in Vapor Gard reduced the amount of circling roots, but not to acceptable levels. Trifluralin in latex paint was ineffective at 0.5%, slightly reduced the development of circling roots at 2%, and at 4% reduced circling rooting to the same extent as the SpinOut. Surflan at 0.5% in Vapor Gard reduced the development of circling roots to the same extent as the SpinOut. All other rates of Surflan, in both carriers, almost totally eliminated circling roots. There were no significant differences in root weight or total plant weight among any of the treatments at either date of evaluation.
Cover crops are grown in vineyards for many reasons, including erosion control, maintaining organic matter and changing pest complexes. Changing a management practice from using resident vegetation as a cover to other planted cover crops will change the vineyard floor flora. The cover crops of `Olge' oat, `Olge' oat and purple vetch, and purple vetch alone were compared to resident vegetation as winter planted cover crops. The cover was harvested in April of each year and blown under the vine row; The cover crop remains were disked into the middles after mulching. Three varieties of subterranean clover were planted in the vine rows at each location in one-half of each of the cover crops. The winter annual weed species, black and wild mustard, common chickweed and annual bluegrass decreased in the inter-row areas. The perennial weed field bindweed increased in all cover crop treatments.
Cider gum (Eucalyptus gunnii Hook. F.), Monterey pine (Pinus radiata D. Don), and camphor tree [Cinnamonium camphora (L.) J. Presl] were evaluated in a field study comparing the effects of herbicides on tree growth. Trees were planted on 13 May 1983 and treated on 20 May 1983, 10 Apr. 1984, and 4 Oct. 1984 with simazine, oryzalin, napropamide, and oxyfluorfen. Glyphosate was applied as a postemergence treatment in all basins on 20 Mar. 1984. None of the herbicides injured the trees. Trunk circumferencesin treated plots increased as much as 553% over untreated plots. All species showed a positive response to increasing weed control. Chemical names used: 6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine (simazine); 3,5-dinitro-N4,N4-dipropylsulfanilamide (oryzalin); N,N-diethyl-2-(1-naphthalenyloxy)-propanamide (napropamide); 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene (oxyfluorfen); N-(phosphonomethyl)glycine (glyphosate).
A double-tent solarization technique, which accumulates higher soil temperatures than solarization of open fields, was recently approved by the California Department of Food and Agriculture (CDFA) as a nematicidal treatment for container nurseries. Due to the need for broad-spectrum pest control in container nursery settings, this technique was tested to determine its usefulness as an herbicidal treatment. Laboratory-derived thermal death dosages (temperatur × time) for several weed species important in California, including common purslane (Portulaca oleracea), tumble pigweed (Amaranthus albus), and black nightshade (Solanum nigrum), were previously determined and the data were used as guidelines for devising treatment duration in this study. In two field experiments conducted in 1999 and 2000 to validate the laboratory data, moist soil was placed in black polyethylene planting bags [3.8 L (1 gal) volume], artificially infested with seeds of the three test species, and subjected to 0 to 24 hours of double-tent solarization after reaching a threshold temperature of 60 °C (140 °F) (about 1.5 to 2.0 h after initiation of the experiment). In 1999, samples were removed at 2, 4, 20, and 24 hours after reaching the 60 °C threshold, then incubated to ameliorate possible secondary dormancy effects. Seeds failed to germinate in any of the solarized treatments. In 2000, samples were removed at 0, 1, 2, and 6 h after reaching 60 °C. Again, apart from the nonsolarized control treatment, all weed seeds failed to germinate at any of the sampling periods, in accordance with prior laboratory thermal death results. Reference tests to estimate effects of container size on soil heating showed that soil in smaller container sizes (soil volume) reached higher temperatures, and were maintained at high temperature [above 60 °C (140 °F)] for a longer period of time, than larger container sizes. The double-tent solarization technique can be used by commercial growers and household gardeners to effectively and inexpensively produce weed-free soil and potting mixes in warmer climatic areas.
The cut flower and bulb industry in California is an important part of the state's agricultural economy and it has relied heavily upon the use of methyl bromide as a treatment to control soil-borne pests. With the phase out of methyl bromide, it is important to develop alternatives that will maintain crop productivity. This report describes research testing the efficacy of propargyl bromide against selected nematode, fungal, and weed species. Three sites were selected in California to represent different soil types and environments. Propargyl bromide was applied to soil in large, buried containers at rates ranging from 28 to 168 kg·ha−1 and compared with standard soil fumigants. The citrus nematode (Tylenchulus semipenetrans Cobb) and an isolate of Fusarium oxysporum Schlechtend:Fr were both controlled at the lowest rate of propargyl bromide tested: 28 kg·ha−1. Weed species varied greatly in their sensitivity to propargyl bromide. A 100% reduction in common purslane (Portulaca oleracea L.) and pigweed (Amaranthus retroflexus L.) germination occurred at 112 kg·ha−1 propargyl bromide, regardless of geographical location. Results for annual bluegrass (Poa annua L.) control were more variable across locations and years, but more than 90% control was consistently achieved with 168 kg·ha−1 propargyl bromide. Cheeseweed (Malva parviflora L.) and field bindweed (Convolvulus arvensis L.) were never consistently controlled by propargyl bromide. When compared with the soil fumigants methyl bromide, iodomethane, and metam sodium, propargyl bromide provided comparable control of all soil-borne pests, but at much lower rates. Although higher rates of propargyl bromide, more than 112 kg·ha−1, were needed to control weeds, these rates still were almost half that required of the other standard fumigants.
Two field trials were conducted from 2002 until 2004 to evaluate several chemicals as alternatives to methyl bromide for the production of calla lily (Zantedeschia sp.) rhizomes. Various rates and chemical combinations were tested. The chemicals were applied through a drip irrigation system. The chemicals included iodomethane, chloropicrin, 1,3-dichloropropene, metham, sodium furfural, and sodium azide. None of the treatments reduced the viability of seed of mallow (Malva parviflora) previously buried in the plots. Propagules of nutsedge (Cyperus esculentus) and seed of mustard (Brassica nigra) were controlled by iodomethane + chloropicrin, 1,3-dichloropropene + chloropicrin, chloropicrin alone, 1,3-dichloropropene alone, and furfural + metham sodium. Propagules of calla were controlled by all of the treatments except sodium azide and furfural + metham sodium. In the first trial, all treatments reduced the populations of soilborne plant pathogens, including Pythium spp., Phytophthora spp., and Fusarium oxysporum, except for sodium, which did not reduce the population of Phytophthora spp. In the second trial, all treatments controlled Pythium spp. but only a high rate of iodomethane + chloropicrin reduced the population of F. oxysporum. For all treatments, the incidence of disease caused by soilborne pathogens was reduced compared to the nontreated control. The number and value of harvested rhizomes were greater among all of the treatments, except for sodium azide, compared to the control. The harvested value of the crop for the best treatments increased significantly compared to the control. A successful crop of calla rhizomes can be produced by combinations of iodomethane, chloropicrin, 1,3-dichloropropene, and metham sodium.