Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chun Zhang x
Clear All Modify Search
Open access

Wenlei Guo, Li Feng, Dandan Wu, Chun Zhang and Xingshan Tian

Widespread herbicide-resistant weeds and severe insect pest infestations pose a challenge to the preplant pest management (PPPM) strategy currently in use in leaf vegetable fields in southern China. The aim of this study was to develop a new weed and insect control method for use before planting leaf vegetables in southern China. Two flaming machines (a tractor mounted and a trolley flaming machine) were designed, and their efficacies for the control of insect and weed pests were evaluated and compared in two field trials. With liquefied petroleum gas (LPG) at 101 kg·ha−1, flaming machines reduced plant numbers by 86.7% to 98.8% 2 days after treatment (DAT), which was equal to or higher than the reduction after application of paraquat at 900 g·ha−1. Some weed species, especially awnless barnyard grass (Echinochloa colona) and goosegrass (Eleusine indica), regrew at 7 DAT, resulting in a decrease in control efficacy. Flaming machines also reduced the number of diamondback moth (Plutella xylostella) larvae by 83.0% to 88.2% and the number of adult striped flea beetles (Phyllotreta striolata) by 64.9% to 80.9%. This is the first report on flaming treatment in China to show that this method is a promising alternative to chemical pesticides for PPPM in leaf vegetable fields.

Free access

Ke-peng Che, Chun-yang Liang, Yue-guang Wang, De-min Jin, Bin Wang, Yong Xu, Guo-bing Kang and Hai-ying Zhang

Amplified fragment length polymorphism (AFLP) analyses were used to assess genetic diversity among 30 genotypes of watermelon [Citrullus lanatus (Thunb.) Mansf.] representing a broad genetic base, including breeding lines and commercial germplasm. Eight AFLP primer combinations selected from 64 primer combinations were polymophic. The polymorphism was 13.0% to 31.9% within the 28 cultivars examined, and 45.3% to 64.2% among all the genotypes. Each genotype could be successfully distinguished based on AFLP scoring. Cluster grouping of accessions based on the AFLP analysis was consistent with that from classification by pedigrees and ecotypes.