Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Christopher C. Gunter x
Clear All Modify Search

Physiological disorders affect both the appearance and nutritional quality of processing tomatoes intended for whole-peel and diced products. The cause of color disorders, such as yellow shoulder disorder (YSD), involves an interaction between plant genotype and the environment. Soil factors that correlate with the incidence of YSD are soil K, K:Mg ratios, organic matter, and phosphorus. Fields with an organic matter above 3.5% have a lower incidence of YSD. Progress in developing an integrated crop management system that growers and processors can use to profitably improve quality and nutritional value while reducing color disorders of tomato has been made. Decision tools for managing color disorders have been developed. Varieties of tomato differ in their susceptibility to color disorders; thus, variety use may offer growers a strategy to manage fields with low potassium, phosphorus, or low organic matter. Soil K application through drip irrigation was effective when applied at full bloom when the plants were most actively growing. Trials conducted in Indiana and Ohio during the 2003 and 2004 growing seasons demonstrated that weekly K application as a batch injection or solid application improved fruit color and reduced internal whitening. The effect of K addition is toward improved hue and L (lower values), but that trend is not always statistically significant and variety-specific responses are observed. Environmental factors for this response are explored. Managing this complex color disorder will entail minimizing risk of incidence, rather than preventative or curative applications.

Free access

Tuber tissue calcium has been linked to several potato quality characteristics, including internal defects and the susceptibility of tubers to decay by soft rotting Erwinia species. We were particularly interested in studying the relationship between supplemental calcium fertilization during the seed tuber production cycle to raise the seed piece calcium concentration and the impact on crop performance the following season. The role of seed tuber tissue calcium level on seed piece decay, growth, development, and performance of the plant was evaluated for cultivars Russet Burbank, Dark Red Norland, Atlantic, Superior, and Snowden. This study was performed over four growing seasons. Seed tubers were raised with varying calcium and the following season, individual tubers (over 3,000 total for 4 years of study) were sampled for calcium and hand planted in the field. They were evaluated for seed piece decay and total tuber yield during the growing season. Seed tubers raised with supplemental calcium resulted in significantly higher mean calcium content than the control tubers. In general, calcium-raised seed tubers tended to produce a more vigorous main sprout and higher tuber yield. We also found that there are significant differences among these cultivars for the characteristics measured. Consistently, in all three years, `Atlantic' responded to test conditions with the lowest decay values, and `Dark Red Norland' consistently showed the highest decay values. This suggests that there may be a genetic component involved in these two responses and these genotypic differences could be exploited to improve cultivated potatoes.

Free access

Interest and use of grafted tomato (Solanum lycopersicum) in the United States continues to grow. Pioneered in Asia, herbaceous grafting is a commonly used cultural practice to manage many soilborne pathogens. Bacterial wilt (BW), caused by the pathogen Ralstonia solanacearum, is an aggressive soilborne pathogen that affects tomato grown in the southeastern United States. Traditional fumigation methods have limited effectiveness in the management of this pathogen. The present study was conducted to compare the bacterial wilt resistance of three commercially available tomato rootstocks, which are purported to be resistant to bacterial wilt: ‘Cheong Gang’, ‘RST-04-106-T’, and ‘Shield’. The determinate hybrid tomato ‘Red Mountain’, which is susceptible to bacterial wilt, was used as the scion and nongrafted control. Three locations were used over 2 years in North Carolina: an on-farm site with a history of bacterial wilt and two North Carolina Department of Agriculture Research Stations with no recent history of bacterial wilt. No disease symptoms were observed in any of the three grafted treatments, whereas the nongrafted controls showed between 30% and 80% disease incidence at the on-farm location. The resultant rootstock-imparted resistance improved marketable yields by between 88% and 125% compared with the nongrafted plants. When grown in locations lacking BW there were no yield benefits to grafting with any of the three rootstocks.

Open Access

At its most basic, grafting is the replacement of one root system with another containing more desirable traits. Grafting of tomato (Solanum lycopersicum) onto disease-resistant rootstocks is an increasingly popular alternative for managing economically damaging soilborne diseases. Although certain rootstocks have demonstrated ancillary benefits in the form of improved tolerance to edaphic abiotic stress, the mechanisms behind the enhanced stress tolerance are not well understood. Specific traits within root system morphology (RSM), in both field crops and vegetables, can improve growth in conditions under abiotic stress. A greenhouse study was conducted to compare the RSM of 17 commercially available tomato rootstocks and one commercial field cultivar (Florida-47). Plants were grown in containers filled with a mixture of clay-based soil conditioner and pool filter sand (2:1 v/v) and harvested at 2, 3, or 4 weeks after emergence. At harvest, roots were cleaned, scanned, and analyzed with an image analysis system. Data collected included total root length (TRL), average root diameter, specific root length (SRL), and relative diameter class. The main effect of cultivar was significant (P ≤ 0.05) for all response variables and the main effect of harvest date was only significant (P ≤ 0.01) for TRL. ‘RST-106’ rootstock had the longest TRL, whereas ‘Beaufort’ had the shortest. ‘BHN-1088’ had the thickest average root diameter, which was 32% thicker than the thinnest, observed in ‘Beaufort’. SRL in ‘Beaufort’ was 60% larger than ‘BHN-1088’. This study demonstrated that gross differences exist in RSM of tomato rootstocks and that, when grown in a solid porous medium, these differences can be determined using an image analysis system.

Full access

A direct comparison was made of several commercially available calcium sources applied on two different schedules for their effectiveness in increasing tuber medullary and periderm tissue calcium concentrations in 170–284-g tubers of the cultivar Atlantic grown on a Plainfield sandy loam. Plots (6 x 3 m) were arranged in a CR design in 1993 and a RCBD in 1994 (eight replications). Paired measurements of tuber Ca concentration and internal quality (±hollow heart, ±internal brown spot) were made on individual tubers produced in plots with no additional or additional Ca (168 kg Ca/ha) supplied from either gypsum, liquid calcium nitrate, or NHIB. Two Ca and N application schedules were compared: 1) application at emergence and hilling (non-split), 2) application at emergence, hilling, and 4 and 8 weeks after hilling (split). All plots received 224 kg H/ha balanced with ammonium nitrate. In general, tuber yield and grade were unaffected by treatments in 1993 and 1994, but overall percent A-grade was lowest and percent B-grade highest in 1993 compared with 1994 data. In 1993, all treatments receiving Ca had greater mean tuber medullary and periderm tissue Ca concentration values and a greater percentage of tubers with an elevated Ca concentration compared with non-Ca-supplemented controls. The overall incidence of tuber internal defects was 5% in 1993. All split schedule treatments receiving Ca showed 0% internal defects. In contrast, nearly 8% of the tubers from control plots showed some defect. The medullary tissue Ca concentration of 65% of the tubers having either defect was below the median value of Ca concentration for the entire experiment in 1993. Similar evaluations are underway for the 1994 crop. These data suggest that tuber calcium concentration may be related to the incidence of these internal defects.

Free access

Pathogenic bacteria (Erwinia spp.) can have a significant impact on stand establishment and sprout health. These bacteria cause soft rot of the seed piece, which is common in wet spring conditions resulting in great economic loss. Recent studies have demonstrated that the incidence and severity of soft rot can be significantly reduced by increasing tuber calcium. We investigated the influence of seed piece calcium on tuber production. Field growing potato plants were treated with supplemental calcium during tuber bulking (calcium at 168 kg·ha–1 from calcium nitrate or N-Hib) to increase the seed tuber medullary calcium levels. All three cultivars (`Superior', `Atlantic', `Dark Red Norland') responded to supplemental calcium application with increases in mean calcium contents, even though soil tests showed high native calcium levels (1000 kg·ha–1). Seed tubers were sampled for calcium by removing a longitudinal slice from the center of each tuber and planting one of the resulting halves for seed piece decay evaluation and the other for yield evaluation. Calcium nitrate-treated seed tubers produced higher yields compared to ammonium nitrate and N-Hib in `Atlantic' in `Dark Red Norland'. This trend did not hold true for `Superior'. Our results suggest that a) it is possible to increase seed piece tuber calcium levels with supplemental calcium application even in soils testing high in calcium and b) improving the calcium concentration of the seed piece can increase tuber yield in some cultivars.

Free access

Improvement of crop water use is imperative. Plants’ responses to limited water can dictate their ability to better use available resources and avoid prolonged and severe stress. The following study was conducted to determine how tomato (Solanum lycopersicum) rootstocks with different root system morphologies respond to drying soils. Plants were grown in pots containing an inorganic substrate composed of calcined clay and sand in a greenhouse on North Carolina State University’s campus. The heirloom tomato cultivar Cherokee Purple was used as the scion for ‘Beaufort’ and ‘Shield’ rootstocks as well as the self-grafted control. These rootstocks were assigned either normal or reduced irrigation treatments. Plants grown under the normal irrigation schedule were weighed and watered daily to maintain container capacity for one week. Those receiving reduced irrigation had all water withheld for one week, at which point strong midday wilting became evident. Shoot physiological and morphological data as well as root morphological data were collected at the end of the study. A constitutive positive increase on relative water content, leaf area, stomatal conductance (g S), and net CO2 assimilation rate was observed with scions grafted on ‘Beaufort’. In addition, this rootstock had a significantly longer total root system (118.6 m) compared with ‘Shield’ (94.9 m) and the self-grafted control (104.2 m). Furthermore, 76.4% of the total root length observed in ‘Beaufort’ was composed of very thin diameter roots ( <0.5 mm), which was higher than ‘Shield’ (73.67%) and the self-grafted control (69.07%). The only significant rootstock irrigation interaction observed was for effective quantum yield of photosystem II (φPSII). At normal irrigation there were no differences among the rootstock treatments; however, at reduced irrigation ‘Beaufort’ had significantly higher φPSII than both ‘Shield’ and the self-grafted control. These results may explain some of the improved production and water use efficiency observed in field trials using ‘Beaufort’ rootstock, and data secured may allow for better screening of rootstocks for improved water use efficiency in the future.

Free access

Three Ca sources and two application schedules were compared for their effectiveness for increasing tissue Ca concentrations in 170 to 284 g field-grown tubers of `Atlantic' potato (Solanum tuberosum L.). Additional observations were made of internal physiological defects. Paired measures of tissue (periderm and nonperiderm) Ca concentration and internal quality (±hollow heart, ±internal brown spot) were made on individual tubers produced in plots fertilized with N at 224 kg·ha-1 and Ca at either 0 or 168 kg·ha-1, supplied from either gypsum, calcium nitrate or NHIB (9N-0P-0K-11Ca, a commercial formulation of urea and CaCl2). Application of N and Ca at emergence and hilling (nonsplit) was compared to application at emergence, hilling, and 4 and 8 weeks after hilling (split). Tuber yield and grade were unaffected by treatments. Split Ca application (from either calcium nitrate or NHIB) increased mean tuber nonperiderm tissue Ca concentrations and the percentage of tubers with an elevated Ca concentration in both years compared with non-Ca-supplemented controls. Split Ca application also resulted in greater increases in Ca in nonperiderm tissue than nonsplit Ca application in 1994. Although the correlation coefficient between Ca level in periderm and nonperiderm tissue of >400 individual tubers was highly significant in both study years, linear regression analyses suggested the Ca level in the two tissues were poorly related. Split application was associated with a 37% reduction in the incidence of internal tuber defects, relative to nonsplit application in 1994. Calcium application did not affect tuber internal quality based on means analysis, but chi-square analysis suggested that Ca concentration and internal quality of individual tubers may be related. The incidence of internal defects was 16.4% in tubers with nonperiderm tissue Ca >100 μg·g-1 dry weight compared to 10.6% in tubers with nonperiderm tissue Ca >100 μg·g-1 dry weight. These data suggest that 1) it is feasible to increase tuber Ca levels by field applications of moderate amounts of Ca, 2) tuber quality is impacted by N and Ca application schedule, and 3) Ca concentrations in tuber periderm and nonperiderm tissues may be controlled independently.

Free access

The following study was conducted to address water use efficiency in grafted tomato (Solanum lycopersicum) in an on-farm environment. The commercial rootstock cultivars Beaufort (BE) and Shield (S) were chosen as these two have different root system morphologies that may benefit water use efficiency. The heirloom cultivar Cherokee Purple (CP) was grafted onto both rootstocks and used as the nongrafted control. The study was conducted in 2016 and 2017 on a 5-acre vegetable and cut flower farm in North Carolina’s Piedmont region. Plants were grown under protected, high-tunnel culture where they received either 100% (3 hours every other day) or 50% (1.5 hours every other day) of the grower’s normal irrigation regime. At 50% irrigation, ‘Beaufort’-grafted plants yielded significantly more than nongrafted ‘Cherokee Purple’ and ‘Shield’-grafted plants. Furthermore, ‘Beaufort’-grafted plants at 50% irrigation yielded more than nongrafted ‘Cherokee Purple’ receiving the 100% irrigation treatment. The ‘Beaufort’-grafted plants significantly improved irrigation water use efficiency (iWUE) at the 50% irrigation treatment compared with the other graft treatments. Yield and iWUE of ‘Shield’-grafted plants were comparable with the nongrafted ‘Cherokee Purple’ at both irrigation treatments. Regardless of irrigation treatment, grafting onto ‘Beaufort’ improved the quality of total fruit harvested. An economic assessment was conducted to determine the feasibility of using grafted plants in conditions lacking significant disease pressure. Purchasing grafted transplants would increase the initial investment by $5227.2 per acre. However, the increased yield obtained when using ‘Beaufort’ rootstock at 50% irrigation increased net revenue by $35,900.41 per acre compared with nongrafted ‘Cherokee Purple’ receiving 100% irrigation, amounting to a 44.6% increase in net revenue while saving ≈383,242 gal/acre of water per growing season. These results indicate that growers can select rootstocks to better manage water use in an environmentally friendly manner without limiting economic gains.

Full access

Vegetable transplants can have excessive internode elongation before field establishment, producing challenges for the growers using mechanical transplanters to establish their crops. Thus, controlling the height of vegetable transplants before planting could be an advantage for commercial vegetable growers. A greenhouse experiment was conducted in 2008 (Year 1–2008) and 2009 (Year 2–2009) to determine the efficacy of exogenous drench-applied abscisic acid (ABA) applications for height control of transplanted pepper. Three types of pepper (Capsicum annuum L.) were investigated: bell pepper ‘Aristotle’, Jalapeño ‘Grande’, and banana pepper ‘Pageant’. In this greenhouse study, 10 ABA treatments, based on application frequency and timing, and an untreated control were arranged in a randomized complete block design with six (Year 1–2008) or five (Year 2–2009) replications and were evaluated over an 8-week period each year. Treatments included: single application at Week 1 (cotyledon stage), Week 2, Week 3, and Week 4; double applications were made at Weeks 1 + 2, Weeks 2 + 3, and Weeks 3 + 4; and multiple applications of ABA at Weeks 1 + 2 + 3, Weeks 2 + 3 + 4, and Weeks 1 + 2 + 3 + 4. All ABA applications were delivered as a drench applied directly to the planting container at a rate of 250 mg·L−1 ABA. Early, single-dose applications (Week 1) were more effective at controlling height than a single dose applied later; a Week 1 application measured during week 5 was 4.1 cm versus a Week 4 application measured at Week 5, which was 5.7 cm. Multiple ABA applications initiated early (at the cotyledon stage) of ‘Aristotle’ bell peppers were effective in controlling transplant height compared with any single ABA application; measured at Week 5, an application at Week 1 + 2 was 3.1 cm compared with the single application treatments from that same measurement date, which ranged from 4.1 to 5.7 cm. Differences among the response of pepper types to ABA application were observed. ‘Aristotle’ had significant treatment effects even 6 weeks after treatment. ‘Pageant’ (banana pepper) exhibited an intermediate response with effects lasting only 2 weeks. No significant height reductions resulting from ABA treatment were observed for ‘Grande’ (Jalapeño pepper). Multiple ABA dose applications initiated at the cotyledon plant growth stage can be used to effectively control transplant height of ‘Aristotle’ bell pepper seedlings.

Free access