Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Christopher A. Frank x
Clear All Modify Search

DNA isolated from Fusarium lateritium Nees: Fr.-infected `Jewel' sweetpotato [Ipomoea batatas (L.) Lam.] plants was compared to F. lateritium-free `Jewel' plants for differences in random amplified polymorphic DNA (RAPD) marker products. Differences in RAPD marker products were detected. Amplified DNA isolations from F. lateritium-infected `Jewel' plants generated additional, unique DNA fragments not found in amplified DNA isolations of F. lateritium-free `Jewel' plants. These unique amplified DNA fragments were consistent with those obtained from amplified DNA isolations of the F. lateritium isolate, 91-27-2, used for inoculation. We found that F. lateritium DNA successfully competes with sweetpotato DNA in the polymerase chain reaction for priming sites in a 3: 1 ratio of sweetpotato DNA to F. lateritium DNA. Our results indicate the importance of avoiding plant material infested with pathogens to avoid spurious marker bands.

Free access

Two experiments were conducted to develop a protocol for rooting stem cuttings from 3-, 5-, and 7-year-old fraser fir [Abies fraseri (Pursh) Poir.] Christmas trees. The first experiment tested the effect of stumping treatments and tree age on shoot production and subsequent adventitious rooting. One auxin concentration [4 mm indole-3-butyric acid (IBA)] and a nonauxin control were tested. Stock plants were stumped to the first whorl (trees in the field 3 and 5 years) or the first, third, and fifth whorls (trees in the field 7 years). Intact (nonstumped) controls were also included for each age. The second experiment was designed to create a quantitative description of the effects that crown (foliage and above ground branches of a tree) position have on the rooting of stem cuttings collected from stumped and nonstumped trees. The exact position was determined by measuring the distance from the stem, height from the ground, and the degrees from north. Crown positions were recorded as cuttings were collected and then cuttings were tested for rooting response. The rooting traits assessed in both experiments included rooting percentage, percent mortality, number of primary roots, total root length, root symmetry, and root angle. In the first experiment, rooting percentage, primary root production, and total root length increased as the age of the stock plant decreased and the severity of the stumping treatment increased. Auxin treatment significantly increased rooting percentage, root production, root lengths, and root symmetry while decreasing mortality. Overall, the highest rooting percentages (51%) and the greatest number of primary roots (8.1) occurred when 3-year-old stock plants were stumped to the first whorl and treated the cuttings with 4 mm IBA. The greatest total root lengths (335 mm) occurred in cuttings from the 3-year-old stock plants. In the second experiment, rooting percentage was significantly affected by the position from which the cuttings were collected. Cuttings collected lower in the crown and closer to the main stem rooted more frequently than cuttings collected from the outer and upper crown.

Free access

Seven concentrations of indole-3-butyric acid (IBA), seven concentrations of 1-naphthaleneacetic acid (NAA), and a nonauxin control were tested over three growth stages to determine their ability to promote adventitious rooting of stem cuttings from 3- and 4-year-old stock plants of virginia pine (Pinus virginiana Mill.). Cuttings were harvested September 2000 (semi-hardwood), February 2001 (hardwood), June 2001 (softwood), and October 2001 (semi-hardwood), treated with auxin concentrations ranging from 0 to 64 mm and placed under intermittent mist in a greenhouse. Rooting percentage, percent mortality, number of primary roots, total root length, root symmetry, root angle, and root diameter were assessed following 16 weeks. Growth stage affected every rooting trait measured except root symmetry and diameter. Auxin type affected total root length and root diameter, while auxin concentration affected every rooting trait except root angle. The highest predicted rooting percentages (46%) occurred when semi-hardwood cuttings were collected in September 2000 and treated with 7 mm auxin. Cuttings collected within the same growing season (2001) exhibited the highest predicted rooting percentage (33%) when softwood cuttings were treated with 6 mm auxin. Semi-hardwood cuttings rooted in 2001 produced the greatest number of roots and root lengths. Root diameter was significantly greater when NAA rather than IBA was applied, especially at higher concentrations.

Free access

Seven concentrations of IBA and seven concentrations of NAA plus a nonauxin control were tested over three growth stages to determine their effectiveness in promoting adventitious root formation on stem cuttings taken from 3- and 4-year-old stock plants of Fraser fir [Abies fraseri (Pursh) Poir.]. Cuttings were prepared in March (hardwood), June (softwood), or November (semi-hardwood) 2001, treated with auxin concentrations ranging from 0 to 64 mm, and placed under mist. Rooting percentage, percent mortality, number of primary roots, total root length, root system symmetry, and root angle were recorded after 16 weeks. Growth stage and auxin concentration significantly affected every rooting trait except root angle. NAA significantly increased the number of primary roots and total root length. However, auxin type did not significantly affect rooting percentage or percent mortality. The highest rooting percentages (99%) occurred when softwood cuttings were treated with 5 mm auxin, however, semi-hardwood cuttings also rooted at high percentages (90%) and had no mortality when treated with 14 mm auxin. Regardless of auxin type, the number of primary roots and total root length varied in similar patterns across concentration, although, NAA tended to induce a greater response. To root Fraser fir stem cuttings collected from 3- and 4-year-old stock plants, it is recommended that a concentration of 5 mm NAA should be used on softwood cuttings and 14 mm IBA on semi-hardwood cuttings. Chemical names used: indole-3-butyric acid (IBA); 1-naphthaleneacetic acid (NAA).

Free access

Most bell peppers (Capsicum annuum L.) produced and consumed are green. However, yellow, red, orange, white, black, and purple bell peppers are also available. While bell pepper consumption in the United States has been increasing in the past 10 years, limited information is available on how their color, retail price, and vitamin C content influence consumer preferences. A conjoint analysis of 435 consumer responses showed that, for the total sample, color was about three times more important than retail price in shaping consumers' purchase decisions, while vitamin C content was nearly irrelevant. Six distinct consumer segments were identified through cluster analysis. Four segments favored green peppers, while one segment favored yellow and one favored brown. Demographic variables generally were not good predictors of segment membership, but several behavioral variables, such as past bell pepper purchases, were significantly related to segment membership. While green is generally the preferred color, market segments exist for orange, red, yellow, and even brown peppers. Applications to marketing strategies suggested that price sensitivity could explain why green peppers were priced individually, but those of other colors were priced by weight, and that promotion of increased vitamin C content would be most effective if associated specifically with yellow and orange peppers.

Free access

For years, strawberry (Fragaria ×ananassa L.) runner plant nurseries have relied on methyl bromide (MB) fumigation of soil to produce healthy transplants. Methyl bromide, however, has been phased out due to its environmental risks. The potential for alternative fumigants to replace MB was evaluated at low and high elevation strawberry nurseries in California. The alternative fumigant iodomethane plus chloropicrin (IMPic) and a nonfumigated control (NF) were compared to methyl bromide plus chloropicrin (MBPic) at a low elevation nursery (LEN) and at a high elevation nursery (HEN) near Susanville, Calif. At a HEN near Macdoel, Calif., MBPic was compared to alternative fumigants IMPic, 1,3-dichloropropene plus chloropicrin mixture (Telone C35) followed by dazomet, chloropicrin (Pic) followed by dazomet and NF. Plants produced at the LEN were transplanted at the Macdoel HEN to measure the effects of soil fumigant history on plant health and runner plant production. Plants produced at both high elevation nurseries were evaluated for fruit yield and quality at two commercial fruit production sites in soils previously fumigated with MBPic or Pic. Runner plant production at the nurseries was similar in plots fumigated with either MBPic or alternative fumigants. All fumigation treatments had higher runner plant production than plants produced for two production cycles on NF soils. Generally, fruit yields from nursery plants produced on soils fumigated with IMPic, Pic followed by dazomet, or Telone C35 followed by dazomet, were similar to fruit yields from plants produced on MBPic fumigated soils. Overall, our results indicate that preplant soil treatments with IMPic, Pic followed by dazomet, and Telone C35 followed by dazomet, are potential alternatives to MBPic fumigation for strawberry runner plant nurseries. Fruit yields by plants in MBPic and Pic fumigated soils were comparable; however, they were more variable in Pic fumigated soils. Chemical names used: 1,3-dichloropropene (1,3-D), methyl bromide, methyl iodide (iodomethane), trichloronitromethane (chloropicrin), tetrahydro-3, 5-dimethyl-2 H-1,3,5-thiadiazine-2-thione (dazomet).

Free access

Extension and research professionals in the southeastern United States formed the Southern Nursery Integrated Pest Management working group (SNIPM) to foster collaboration and leverage resources, thereby enhancing extension programming, increasing opportunity, and expanding the delivery of specialized expertise to nursery crop growers across a region. Building a productive and lasting working group requires attracting a group of research and extension faculty with complementary expertise, listening to stakeholders, and translating stakeholder needs into grant priorities to help solve problems, all hallmarks of effective teamwork principles. SNIPM has now grown to include 10 U.S. states and 11 institutions and has been awarded seven grants totaling $190,994 since 2009. A striking benefit of working group membership was observed over time: synergy. Greater awareness of individual expertise among SNIPM members, each of whom were focused on different aspects of the nursery production system stimulated multistate extension publications, electronic books (eBooks), mobile device applications (apps), popular press articles, and spin-off research projects when separate foci were combined and directed toward complex challenges. Deliverables achieved from this faculty collaboration include nine peer-reviewed publications, four manuals and books and 23 book chapters, and a combined total of 11 abstracts, conference proceedings and extension publications. To date, the return on investment for SNIPM is one deliverable produced to every $2265.89 in grant funding. SNIPM has also been honored with multiple American Society for Horticultural Science publication awards as well as the Southern Region Integrated Pest Management Center Bright Idea Award for the quality and originality of their project outputs. Continuing to work together toward common goals that bridge technology and serve the nursery industry while supporting each individual member’s program will be crucial to the long-term success of this working group.

Full access