Search Results
Salt tolerance of seven Texas Superstar® perennials [Malvaviscus arboreus var. drummondii (Turk’s cap), Phlox paniculata ‘John Fanick’ (‘John Fanick’ phlox), Phlox paniculata ‘Texas Pink’ (‘Texas Pink’ phlox), Ruellia brittoniana ‘Katie Blue’ (‘Katie Blue’ ruellia), Salvia farinacea ‘Henry Duelberg’ (‘Henry Duelberg’ salvia), Salvia leucantha (mexican bush sage), and Verbena ×hybrida ‘Blue Princess’ (‘Blue Princess’ verbena)] was evaluated in a greenhouse experiment. Plants were irrigated with a nutrient solution at electrical conductivity (EC) of 1.1 dS·m−1 (control) or a salt solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks. ‘John Fanick’ and ‘Texas Pink’ phlox plants in EC 5 had severe salt foliage damage, while those in EC 10 were died. Mexican bush sage in EC 10 had severe salt foliage damage. Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena had minor foliar damage regardless of treatment. EC 5 reduced the shoot dry weight (DW) by 45% in ‘Texas Pink’ phlox and 11% to 18% in ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage, but did not impact the shoot DW of Turk’s cap and ‘John Fanick’ phlox. EC 10 further decreased the shoot DW of ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage plants by 32%, 29%, and 56%, respectively. EC 5 decreased leaf net photosynthesis (Pn) of ‘Texas Pink’ phlox and mexican bush sage, while EC 10 reduced Pn of all species except ‘Henry Duelberg’ salvia and ‘Blue Princess’ verbena. ‘Katie Blue’ ruellia and ‘Blue Princess’ verbena had relatively lower leaf Na concentration and ‘John Fanick’ phlox, ‘Texas Pink’phlox, and mexican bush sage had higher leaf Cl concentrations. In summary, Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena were the most tolerant perennials, and ‘John Fanick’ phlox, ‘Texas Pink’ phlox, and mexican bush sage were the least tolerant to salinity.
The goal of this experiment was to evaluate the efficiency of foliar application of dikegulac sodium on increasing the lateral branching of ‘Merritt’s Supreme’ bigleaf hydrangea (Hydrangea macrophylla). Plants were grown in greenhouses at two locations including El Paso, TX and Kosciusko, MS. Two weeks before application of dikegulac sodium, half of plants were hand-pinched leaving two nodes. Foliar spray of dikegulac sodium at 400, 800, or 1600 mg·L−1 was then applied to pinched and unpinched plants. There were two additional control treatments: pinched or unpinched without application of dikegulac sodium. Data were collected at 2 weeks, 6 weeks, 80 days, and 10 months after treatments. Bigleaf hydrangea plants exhibited severe phytotoxicity including interveinal chlorosis or bleaching of new growth at 2 weeks after application of dikegulac sodium with more pronounced symptoms at higher dikegulac sodium concentrations. The severity of phytotoxicity symptoms became less significant at 6 weeks after treatment. The effect of dikegulac sodium on bigleaf hydrangea plant growth, number of branches, and number of flowers depended on both locations and dosages. In El Paso, TX, dikegulac sodium at 800 or 1600 mg·L−1 inhibited bigleaf hydrangea plant growth at 6 weeks and 80 days after treatment, and this effect disappeared at 10 months after treatment. Dikegulac sodium at all tested dosages doubled or tripled the number of branches of pinched or unpinched bigleaf hydrangea, respectively, at 80 days after treatment. At 10 months after treatment, the number of branches and flowers of bigleaf hydrangea plants tended to increase, but was insignificant. In Kosciusko, MS, dikegulac sodium at 1600 mg·L−1 reduced the plant growth at 6 weeks after treatment. This treatment increased the number of branches and flowers of unpinched plants by 196% and 95% and pinched plants by 53% and 31%, respectively, at 10 months after treatment. Dikegulac sodium application could be used to increase number of branches and flowers and produce compact ‘Merritt’s Supreme’ bigleaf hydrangea. However, the efficacy varied with environmental conditions.
Hydrangeas are popular landscape plants that are widely grown in many parts of the world. The objective of this study was to evaluate the salinity tolerance of three novel Dichroa ×hydrangea hybrids [Dichroa febrifuga ‘Yamaguchi Hardy’ × Hydrangea macrophylla ‘Hamburg’ (YH × Hamburg), Dichroa febrifuga ‘Yellow Wings’ ×Hydrangea macrophylla ‘Nigra’ (YW × Nigra), and Dichroa febrifuga ‘Yellow Wings’ ×Hydrangea macrophylla ‘Oakhill’ (YW × Oakhill)]. A 52-day greenhouse study was conducted by irrigating container-grown plants with nutrient solution at an electrical conductivity (EC) of 1.1 dS·m−1 (control) or saline solution at an EC of 5.0 dS·m−1 (EC 5) or 10.0 dS·m−1 (EC 10). At harvest, YH × Hamburg and YW × Nigra in EC 5 and EC 10 still exhibited good quality with average visual scores greater than 4.1 (0 = dead; 5 = excellent). For YW × Oakhill, moderate foliar salt damage was observed with an average visual score of 2.9 in EC 5 and 2.2 in EC 10. Compared with control, the shoot dry weight of YH × Hamburg, YW × Nigra, and YW × Oakhill in EC 5 reduced by 35%, 35%, and 55%, respectively, whereas that in EC 10 decreased by 58%, 58%, and 67%, respectively. Elevated salinity also decreased plant height, leaf area, and leaf greenness [Soil Plant Analysis Development (SPAD) readings]; chlorophyll fluorescence (Fv/Fm); performance index (PI); and net photosynthetic rate (Pn). All these responses might result from excess accumulation of sodium (Na+) and chloride (Cl−) ions in hydrangea leaves. In this study, compared with control, leaf Na+ concentration of YH × Hamburg, YW × Nigra, and YW × Oakhill increased 11, 36, and 14 times, respectively, in EC 5, and 31, 53, and 18 times, respectively, in EC 10. Compared with control, leaf Cl− concentration increased 4, 9, and 7 times in EC 5, and 10, 11, and 8 times in EC 10 for YH × Hamburg, YW × Nigra, and YW × Oakhill, respectively. Leaf nitrogen (N), phosphorous (P), potassium (K+), and iron (Fe3+) concentrations decreased at elevated salinity levels but did not cause any nutrient deficiency. In summary, the three Dichroa ×hydrangea hybrids exhibited different salinity tolerance: YH × Hamburg and YW × Nigra were more tolerant than YW × Oakhill. Salt-tolerant hydrangea hybrids should be chosen for landscape use if soil and/or irrigation water are salty.
Marigolds (Tagetes sp.) are ornamental plants with fine-textured, dark green foliage, and yellow, orange, or bicolored flowers. The relative salt tolerance of eight marigolds [‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, ‘Taishan Orange’, and ‘Taishan Yellow’ african marigold (Tagetes erecta); ‘Hot Pak Gold’, ‘Hot Pak Orange’, and ‘Hot Pak Yellow’ french marigold (Tagetes patula)] was evaluated in a greenhouse experiment. Plants were irrigated weekly with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 3.0 or 6.0 dS·m−1 (EC 3 or EC 6). Marigold plants began to show foliar salt damage (leaf burn and necrosis) at 6 weeks after the initiation of treatment. At harvest (9 weeks after the initiation of treatment), ‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, and ‘Taishan Yellow’ plants exhibited severe foliar salt damage with visual scores less than 2 (on a scale of 0 to 5, with 0 = dead and 5 = excellent with no foliar salt damage) in EC 6. In the same treatment, ‘Hot Pak Gold’ and ‘Taishan Orange’ plants all died and only one of nine ‘Hot Pak Orange’ and ‘Hot Pak Yellow’ plants survived. In EC 3, all cultivars had slight or minimal foliar salt damage with visual scores ≈4 with the exception of Taishan Gold and Taishan Orange plants that showed moderate foliar damage with a visual score of 2.3 and 2.1, respectively. Treatment EC 3 reduced the flower number of ‘Discovery Orange’, ‘Discovery Yellow’, ‘Hot Pak Gold’, and ‘Hot Pak Yellow’ by 52%, 28%, 50%, and 30%, respectively, whereas EC 6 decreased the flower number of ‘Discovery Orange’ and ‘Discovery Yellow’ by 48% and 52%, respectively. In addition, both EC 3 and EC 6 did not reduce total dry weight (DW) of any cultivars, except Hot Pak Yellow and Taishan Yellow. In conclusion, all marigold cultivars are moderately sensitive to salt. ‘Discovery Orange’, ‘Taishan Yellow’, ‘Discovery Yellow’, and ‘Taishan Gold’ were more tolerant than ‘Hot Pak Gold’, ‘Hot Pak Orange’, ‘Hot Pak Yellow’, and ‘Taishan Orange’.