Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chenggang Wang x
  • All content x
Clear All Modify Search
Free access

Chenggang Wang, Rolf Färe, and Clark F. Seavert

In this paper we analyze the sources of variation in revenue per unit of trunk cross-sectional area (TCA) across a 0.87-ha block of 272 pear (Pyrus communis L.) trees in 2003. Revenue capacity efficiency associated with TCA provides an overall measure of nutrient deficiency and revenue inefficiency caused by environmental constraints in the fruit production process. Data envelopment analysis (DEA) is adopted to estimate revenue capacity efficiency and its components. The deficiencies of macro- and micronutrients are measured and optimal nutrient levels computed for each individual tree. These measures are aggregated for comparing between grids and between rootstocks.

Free access

Lingyun Yuan, Yujie Yuan, Shan Liu, Jie Wang, Shidong Zhu, Guohu Chen, Jinfeng Hou, and Chenggang Wang

High temperature (HT) is a major environmental stress limiting oversummer production of nonheading Chinese cabbage (NHCC, Brassica campestris ssp. chinensis Makino). In the present study, the effects of HT on photosynthetic capacity, including light reaction and carbon assimilation, were completely investigated in two NHCC, ‘xd’ (heat-tolerant), and ‘sym’ (heat-susceptible). The two genotypes showed significant differences in plant morphology, photosynthetic capacity, and photosynthate metabolism (carboassimilation). HT caused a decrease in photosynthesis, chlorophyll contents, and photochemical activity in NHCC. However, these main photosynthetic-related parameters, including net photosynthetic rate (PN), maximal photochemical efficiency of PSII (Fv/Fm), and total chlorophyll content in ‘xd’, were significantly higher than those of ‘sym’ plants. The antioxidant contents and antioxidative enzyme activities of ascorbic acid-reduced glutathione cycle in the chloroplast of ‘xd’ were significantly higher than those of ‘sym’. Microscopic analyses revealed that HT affected the structure of photosynthetic apparatus and membrane integrity to a different extent, whereas ‘xd’ could maintain a better integrated chloroplast shape and thylakoid. Inhibited light reaction also hampered carbon assimilation, resulting in a decline of carboxylation efficiency and imbalance of carbohydrate metabolism. However, larger declined extents in these data were presented in ‘sym’ (heat-susceptible) than ‘xd’ (heat-tolerant). The heat-tolerant genotype ‘xd’ had a better capacity for self-protection by improved light reaction and carbon assimilation responding to HT stress.