Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Cheng Chen x
Clear All Modify Search

Sugar accumulation and the activities of sugar metabolizing enzymes were related to the occurrence of pineapple [Ananas comosus (L.) Merr.] flesh translucency. During early fruit development, glucose and fructose were the predominant sugars. Sucrose began to accumulate 6 weeks before harvest at a higher rate in the fruitlet than in the interfruitlet tissue. Electrolyte leakage from pineapple flesh increased rapidly from 6 weeks before harvest and paralleled sucrose accumulation. Sucrose synthase activity was high in young fruit flesh and declined with fruit development, while the activity of sucrose phosphate synthase was relatively low and constant throughout fruit development. The activities of acid invertase, neutral invertase, and cell-wall invertase (CWI) were high in the young fruit flesh and declined to very low levels 6 weeks before harvest when sucrose started to accumulate. CWI activity increased again, more in the fruitlet than in the interfruitlet tissue, 4 weeks before harvest. Removal of 1/3 of the plant leaves 3 weeks before harvest significantly reduced fruit flesh total soluble solids, CWI activity, and translucency incidence at harvest. The activity of CWI in translucent fruit flesh was significantly higher than in opaque fruit flesh at harvest. CWI activities in the basal section of pineapple flesh and in the fruitlet, where translucency first occurred, were higher than those in the apical section and in the interfruitlet tissue, respectively. Results support the hypothesis that high CWI activity in pineapple flesh at the later stage of fruit development enhances sucrose unloading into the fruit flesh apoplast, leading to increased apoplastic solute concentration (decreased solute potential) and subsequent water movement into the apoplast. This, in turn, may reduce porosity and lead to increased fruit flesh translucency.

Free access

One-year-old grapevines (Vitis labrusca L. `Concord') were supplied twice weekly for 5 weeks with 0, 5, 10, 15, or 20 mm nitrogen (N) in a modified Hoagland's solution to generate a wide range of leaf N status. Both light-saturated CO2 assimilation at ambient CO2 and at saturating CO2 increased curvilinearly as leaf N increased. Although stomatal conductance showed a similar response to leaf N as CO2 assimilation, calculated intercellular CO2 concentrations decreased. On a leaf area basis, activities of key enzymes in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), and key enzymes in sucrose and starch synthesis, fructose-1,6-bisphosphatase (FBPase), sucrose phosphate synthase (SPS), and ADP-glucose pyrophosphorylase (AGPase), increased linearly with increasing leaf N content. When expressed on a leaf N basis, activities of the Calvin cycle enzymes increased with increasing leaf N, whereas activities of FBPase, SPS, and AGPase did not show significant change. As leaf N increased, concentrations of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and 3-phosphoglycerate (PGA) increased curvilinearly. The ratio of G6P/F6P remained unchanged over the leaf N range except for a significant drop at the lowest leaf N. Concentrations of glucose, fructose, and sucrose at dusk increased linearly with increasing leaf N, and there was no difference between predawn and dusk measurements. As leaf N increased, starch concentration increased linearly at dusk, but decreased linearly at predawn. The calculated carbon export from starch degradation during the night increased with increasing leaf N. These results showed that 1) grapes leaves accumulated less soluble carbohydrates under N-limitation; 2) the elevated starch level in low N leaves at predawn was the result of the reduced carbon export from starch degradation during the night; and 3) the reduced capacity of CO2 assimilation in low N leaves was caused by the coordinated decreases in the activities of key enzymes involved in CO2 assimilation as a result of direct N limitation, not by the indirect feedback repression of CO2 assimilation via sugar accumulation.

Free access

To determine the cause of a characteristic zonal chlorosis of `Honeycrisp' apple (Malus ×domestica Borkh.) leaves, we compared CO2 assimilation, carbohydrate metabolism, the xanthophyll cycle and the antioxidant system between chlorotic leaves and normal leaves. Chlorotic leaves accumulated higher levels of nonstructural carbohydrates, particularly starch, sorbitol, sucrose, and fructose at both dusk and predawn, and no difference was found in total nonstructural carbohydrates between predawn and dusk. This indicates that carbon export was inhibited in chlorotic leaves. CO2 assimilation and the key enzymes in the Calvin cycle, ribulose 1,5-bisphosphate carboxylase/oxygenase, NADP-glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, stromal fructose-1,6-bisphosphatase, and the key enzymes in starch and sorbitol synthesis, ADP-glucose pyrophosphorylase, cytosolic fructose-1,6-bisphosphatase, and aldose 6-phosphate reductase were significantly lower in chlorotic leaves than in normal leaves. However, sucrose phosphate synthase activity was higher in chlorotic leaves. In response to a reduced demand for photosynthetic electron transport, thermal dissipation of excitation energy (measured as nonphotochemical quenching of chlorophyll fluorescence) was enhanced in chlorotic leaves under full sun, lowering the efficiency of excitation energy transfer to PSII reaction centers. This was accompanied by a corresponding increase in both xanthophyll cycle pool size (on a chlorophyll basis) and conversion of violaxanthin to antheraxanthin and zeaxanthin. The antioxidant system, including superoxide dismutase and ascorbate peroxidase and the ascorbate pool and glutathione pool, was up-regulated in chlorotic leaves in response to the increased generation of reactive oxygen species via photoreduction of oxygen. These findings support the hypothesis that phloem loading and/or transport is partially or completely blocked in chlorotic leaves, and that excessive accumulation of nonstructural carbohydrates may cause feedback suppression of CO2 assimilation via direct interference with chloroplast function and/or indirect repression of photosynthetic enzymes.

Free access

To determine the cause of zonal chlorosis of `Honeycrisp' apple leaves, we compared CO2 assimilation, carbohydrate metabolism, xanthophyll cycle and the antioxidant system between chlorotic leaves and normal leaves. Chlorotic leaves accumulated higher levels of non-structural carbohydrates, particularly starch, sorbitol, sucrose, and fructose at both dusk and predawn, and no difference was found in total non-structural carbohydrates between predawn and dusk. CO2 assimilation and the key enzymes in the Calvin cycle, ribulose 1,5-bisphosphate carboxylase/oxygenase, NADP-glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, stromal fructose-1,6-bisphosphatase, and enzymes in starch and sorbitol synthesis, ADP-glucose pyrophosphorylase, cytosolic fructose-1,6-bisphosphatase, and aldose 6-phosphate reductase were significantly lower in chlorotic leaves than in normal leaves. However, sucrose phosphate synthase activity was higher in chlorotic leaves. Thermal dissipation of excitation energy was enhanced in chlorotic leaves under full sun, lowering the efficiency of excitation energy transfer to PSII reaction centers. This was accompanied by a corresponding increase in both xanthophyll cycle pool size (on a chlorophyll basis) and conversion of violaxanthin to antheraxanthin and zeaxanthin. The antioxidant system was up-regulated in chlorotic leaves in response to the increased generation of reactive oxygen species. These findings support the hypothesis that phloem loading and/or transport is partially or completely blocked in chlorotic leaves, and that excessive accumulation of non-structural carbohydrates may cause feedback suppression of CO2 assimilation via direct interference with chloroplast function and/or indirect repression of photosynthetic enzymes.

Free access

In this study, we built a floating culture system, which could improve the rooting percentage of stem cuttings of taiwanese wild grape (Vitis thunbergii). We took softwood cuttings instead of hardwood cuttings and tested the effects of cutting type, medium type, and auxin concentration on the rooting percentage. In the first experiment, single leaf cuttings (SLC) in 26 °C circulating water (CW26) produced 82% rooting as compared with 48% rooting in the subirrigation medium [SM (3 horticultural perlite : 2 peatmoss, by volume)]. The highest rooting percentage of 88% occurred in 30 °C circulating water (CW30). The same trend was also observed in terminal cuttings (TC) with 62% rooting in CW26 compared with 27% in SM. The highest rooting percentage of 83% occurred in CW30. Besides having the highest rooting percentage, TC and SLC in CW30 formed adventitious roots 7 and 9 d earlier than in 22 °C circulating water (CW22). In the second experiment, SLC in 1.25 μm 1-naphthalenacetic acid (NAA) solution produced 92% rooting as compared with 82% rooting in the untreated group. In addition, SLC in all NAA solution treatments formed adventitious root 6 d earlier than in the untreated group. Based on these results, we suggest that the floating culture system is a practicable system for the clonal propagation of taiwanese wild grape.

Full access

Green roofs provide multiple environmental and economic benefits, such as roof surface temperature reduction, reduced internal cooling needs, storm water management, and extended life span of roofing materials. However, green roof substrates must be relatively lightweight, so it is typically coarse with limited water holding capacity. We hypothesize the physical characteristics that make the substrates successful on a roof are likely to reduce seed germination. For this study, we tested the germination of three perennial species and one annual: shasta daisy (Leucanthemum ×superbum), yarrow (Achillea millefolium), and indian blanket (Gaillardia pulchella), and pinto bean (Phaseolus vulgaris) (as a control) across five different substrates: peat/perlite/large expanded shale, compost/sand/expanded shale, compost/black dirt/expanded shale, compost/expanded shale, and peat/perlite (control). Substrate physical and chemical properties were analyzed, and a germination test conducted using a randomized complete block design, with each species/substrate combination appearing once per block. Germination was defined as seedling emergence, and monitored every 7 days for 28 days. Pinto bean had the highest germination (76.2%) across all substrates, compared with 43.4% for indian blanket, 40.4% for yarrow, and 23.0% for shasta daisy. Seed germination, across all species, was lower in green roof substrates. Germination success was very strongly correlated with seed length, seed width, and seed area, while no relationship was found between seed germination and substrate pH or electrical conductivity (EC). Therefore, it is likely that the physical characteristics of green roof substrates create poor conditions for seed germination.

Free access

Information on the history, legislative background, and current five levels (national, provincial, county, municipal, and township level) of the agricultural extension system in China are presented herein. In addition to the five levels, there are also six administrative agencies involved: Ministry of Agriculture, State Forestry Administration, Ministry of Science and Technology, Ministry of Education, National Agriculture Leadership Working Group, and National Development and Reform Commission. An example (Zhongfang Township, City of Luoyuan, Fuzhou County, Fujian Province) is given to illustrate the intricate network of the agricultural extension system. Major problems of the Chinese extension system include a complex and inefficient extension network, disconnection between the extension service and stakeholders’ needs, and a “two-boss” dilemma for most extension agencies. However, some current success stories in Chinese agricultural extension may be applicable or provide useful tips to other countries including the United States.

Full access

Plant tissue culture can induce a variety of genetic and epigenetic changes in regenerated plantlets, a phenomenon known as somaclonal variation. Such variation has been widely used in the ornamental foliage plant industry as a source for selection of new cultivars. In ornamental aroids alone, at least 63 somaclonal-derived cultivars have been released. In addition to morphological differences, many somaclonal aroid cultivars can be distinguished by amplified fragment length polymorphism (AFLP) analysis. However, a few cultivars have no detectable polymorphisms with their parents or close relatives by AFLP fingerprints. It is postulated that DNA methylation may be involved in the morphological changes of these cultivars. In this study, methylation-sensitive amplification polymorphism (MSAP) technique was used to study DNA methylation in selected somaclonal cultivars of Alocasia, Aglaonema, Anthurium, Dieffenbachia, Philodendron, and Syngonium. Results showed that polymorphisms were detected in the somaclonal cultivars, suggesting that DNA methylation polymorphisms may associate with tissue culture-induced mutation in ornamental aroids. This is the first study of methylation variation in somaclonal variants of ornamental foliage plants. The results clearly demonstrate that the MSAP technique is highly efficient in detecting DNA methylation events in somaclonal-derived cultivars.

Free access

Own-rooted 1-year-old `Concord' grapevines (Vitis labruscana Bailey) were fertigated twice weekly for 11 weeks with 1, 10, 20, 50, or 100 μm iron (Fe) from ferric ethylenediamine di (o-hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. As Fe supply increased, leaf total Fe content did not show a significant change, whereas active Fe (extracted by 2,2′-dipyridyl) content increased curvilinearly. Chlorophyll (Chl) content increased as Fe supply increased, with a greater response at the lower Fe rates. Chl a: b ratio remained relatively constant over the range of Fe supply, except for a slight increase at the lowest Fe treatment. Both CO2 assimilation and stomatal conductance increased curvilinearly with increasing leaf active Fe, whereas intercellular CO2 concentrations decreased linearly. Activities of key enzymes in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in sucrose synthesis, cytosolic FBPase, all increased linearly with increasing leaf active Fe. No significant difference was found in the activities of ADP-glucose pyrophosphorylase (AGPase) and sucrose phosphate synthase (SPS) of leaves between the lowest and the highest Fe treatments, whereas slightly lower activities of AGPase and SPS were observed in the other three Fe treatments. Content of 3-phosphoglycerate (PGA) increased curvilinearly with increasing leaf active Fe, whereas glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and the ratio of G6P: F6P remained unchanged over the range of Fe supply. Concentrations of glucose, fructose, sucrose, starch, and total nonstructural carbohydrates (TNC) at both dusk and predawn increased with increasing leaf active Fe. Concentrations of starch and TNC at any given leaf active Fe content were higher at dusk than at predawn, but both glucose and fructose showed the opposite trend. No difference in sucrose concentration was found at dusk or predawn. The export of carbon from starch breakdown during the night, calculated as the difference between dusk and predawn measurements, increased as leaf active Fe content increased. The ratio of starch to sucrose at both dusk and predawn also increased with increasing leaf active Fe. In conclusion, Fe limitation reduces the activities of Rubisco and other photosynthetic enzymes, and hence CO2 assimilation capacity. Fe-deficient grapevines have lower concentrations of nonstructural carbohydrates in source leaves and, therefore, are source limited.

Free access