Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Charles W. Heuser x
Clear All Modify Search
Free access

Francis H. Witham, Charles W. Heuser and Jun Chen

Ethidium bromide (EB), at 10-5 to 10-4 M, progressively inhibits NAA-induced rooting of mung bean cuttings. Cycloheximide (CH), 6-methylpurine (6-MP) and kinetin (KIN) also inhibited rooting at the same concentrations, although CH and 6-MP were more effective.

At 70 and up to 130 hours of incubation, after cuttings received a 1-ml pulse of NAA (10-4 M), they exhibited a progressive increase in the number of observed adventitious roots. The addition of one of the inhibitors, 6-MP, EB or KIN to cuttings, pulsed 48 hours earlier with NAA, showed an initial slight inhibition with increased inhibition over time. CH, however, inhibited rooting immediately after addition. From these and other similar kinetic studies, it appears that 6-MP, EB and KIN operate at the transcriptional level and that CH inhibits translation.

Lineweaver-Burk plot analysis of NAA-induced rooting inhibition showed that EB may act as a competitive inhibitor of NAA. Since EB is a known intercalating agent and competitively inhibits NAA-induced rooting, NAA may influence gene expression by ultimately binding to DNA. Studies with space-filling and computer-generated models show that both NAA and EB can bind to certain dinucleotides by an intercalation mechanism.

Full access

John R. Young, E. Jay Holcomb and Charles W. Heuser

Though high electrical conductivity (EC) levels are commonly held to be the primary limiting factor for using spent mushroom compost (SMC) as a growing substrate, EC can be reduced by leaching. This allowed SMC to be successfully used for growing plants. Leaching reduced EC of the substrate solution from as high of 30 dS·m-1 (mmhos·cm-1) to 2 to 3 dS·m-1, a level acceptable for growing plants. The initial EC and container capacity determined the number of leachings and total volume of water required to lower EC of SMC substrates to acceptable levels. As the concentration of SMC was increased, a higher number of leachings or larger volume of water were required to adequately reduce EC levels. In trials spanning 2.5 years, SMC was effectively used as a substrate in the production of marigold (Tagetes patula) `Yellow Girl'. Benefits to plant growth from SMC incorporation included a slow release of nutrients as the SMC decomposed and a good air-filled pore space/water-holding capacity when amended with a commercial nursery mix. From these trials, it is recommended that SMC be incorporated at rates of 25% to 50%. It is not recommended that SMC be used in concentrations over 50% because the EC may be too difficult to manage and the high levels of air-filled pore space of SMC. Though season may affect the initial EC level of SMC, such variation is minimized by leaching while differences in plant response are more likely to be attributed to environmental conditions. No differences in plant growth were observed among SMC sources.

Free access

Dan T. Stearns, David J. Beattie, Charles W. Heuser and Perry M. Morgan

In an elective course titled “Be A Master Student”, freshmen in The Pennsylvania State Univ.'s College of Agricultural Sciences were introduced to subjects ranging from university policies and procedures to skill enhancement in note-taking, test-taking, and time management techniques. A broad knowledge of agricultural sciences at local, state, national, and international levels was developed with the goal to relate agriculture to individual and societal needs. Mentoring relationships between students and faculty developed, not only with course instructors, but also with other faculty through required interviews and one-on-one discussions. Two volunteer faculty instructors taught 20 students per section. The number of sections has increased from four in 1990 to 13 in 1994. More than 70% of incoming freshmen opted to schedule the course in 1994. Student surveys indicated that >90% of those who enrolled would recommend the class to a close friend. Performance tracking shows that studentswho enrolled in the class maintained higher grade point averages than students who did not enroll. A higher rate of retention also has been documented for students who complete “Be A Master Student”!

Free access

Jun Chen, Dengru Wu, Francis H. Witham, Charles W. Heuser and Richard N. Arteca

Adventitious root formation (rooting) in `Berken' mungbean [Vigna radiata (L.) Rwiclz.] cuttings is stimulated by indole-3-acetic acid (IAA). To understand the molecular events that occur during IAA-induced adventitious root initiation, a λgt11 cDNA library was made from mungbean hypocotyls treated with 500 μm IAA for 3 hours and differentially screened. Two cDNAs MII-3 and MII-4 were isolated. Southern analysis revealed that both cDNAs are encoded by different genes. Expression studies showed different patterns for both genes. Both MII-3 and MII-4 were highly expressed in IAA treated hypocotyls, whereas MII-4 was also induced in IAA treated epicotyls. There was no expression of either MII-3 or MII-4 in control or IAA treated leaves. With increasing concentrations of IAA from 100 to 1000 μm there was an increase in the average root number per cutting as well as a stimulation in MII-3 and MII-4. Both MII-3 and MII-4 showed a stimulation in expression 4 hours following treatment with 500 μm IAA reaching a maximum from 4 to 8 hours followed by a decline thereafter. Basal expression of MII-3 was evident between 2 and 8 hours, whereas, a high degree of basal expression was found with MII-4 from 1 to 8 hours followed by a sharp decline. Cycloheximide (50 μm) dramatically reduced rooting and MII-3 expression, whereas MII-4 was only slightly affected.