Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Charles L. Rohwer x
Experiments were performed on Hatiora gaertneri (Regel) Barthlott ‘Jan’ and ‘Rood’ and H. ×graeseri (Wedermann) Barthlott ‘Evita’ to determine their flowering responses to 1) daily light integral (DLI) before and during vernalization; 2) 0 to 6 weeks of short-day (SD) or long-day (LD) photoperiods before vernalization at 10, 12.5, or 15 °C; 3) propagation from April to July; 4) timing of leveling before or during inductive treatments; and 5) SD photoperiods before vernalization under darkness at 0 to 10 °C. ‘Jan’ grown under elevated DLI before vernalization and low DLI during vernalization flowered more prolifically than plants grown under low DLI before vernalization or high DLI during vernalization at 15 °C. Six weeks of SD photoperiods before vernalization increased the number of buds per flowering phylloclade after vernalization at 10 °C and increased flowering uniformity when vernalization duration was insufficient at 10 °C or vernalization temperature was 12.5 or 15 °C. For plants flowering in January, propagation the previous April produced better flowering than propagation in May, June, or July. Removal of apical phylloclades during prevernalization SD or during vernalization was deleterious to flowering. Vernalization in the dark produced marginal flowering, but SD treatment before vernalization increased the percentage of apical phylloclades flowering, buds per flowering apical phylloclade, and percentage of plants flowering after dark vernalization. ‘Evita’ flowered more poorly than either ‘Jan’ or ‘Rood’. Collectively, the most uniform flowering in January occurred when plants were exposed to a sequence of 4 to 6 weeks of SD, vernalization at 7.5 to 15 °C for 8 weeks, then growth under LD for 7 weeks.
Jasmonates are a class of plant hormones involved in plant defense and stress responses. For example, jasmonate-induced defense responses in Lycopersicon esculentum include increases in activity of proteinase inhibitors, polyphenol oxidases, and peroxidases. As part of our efforts to reduce or control greenhouse pest infestations, we hypothesized that methyl jasmonate (MeJA) could induce these biochemical changes in common greenhouse crops. We studied Impatiens wallerana `Super Elfin Pink', L. esculentum `Big Boy', Petunia ×hybrida `Bravo Lavendar', Viola ×wittrockiana `Imperial Beaconsfield', Coleus ×hybridus `Wizard Jade', Nicotiana alata `Saratoga Lime', Pelargonium ×hortorum `Pinto Pink', and Tagetes erecta `Antigua Primrose'. Polyphenol oxidase and peroxidase activity was studied in the first four species, and proteinase inhibitors were studied in all eight. We sprayed plants with 0, 5 × 10-6, or 10-4 molar MeJA and made measurements after 24 hours. We detected a small increase in polyphenol oxidase activity of plants treated with 10-4 molar MeJA; 5 × 10-6 molar had no effect, and L. esculentum had the highest polyphenol oxidase activity. Peroxidase activity was not affected by MeJA. I. wallerana had the highest peroxidase activity, L. esculentum and V. ×wittrockiana had the lowest. 5 × 10-6 molar MeJA increased proteinase inhibitor activity in most species, and 10-4 molar increased activity in every species except P. ×hortorum.
It is commonly recommended to apply phosphorus- or nitrogen- and phosphorus-containing water-soluble fertilizers to annual vegetables at transplant to improve establishment and enhance yield. Plastic mulches are also recommended to increase soil temperature and enhance yield through similar root growth-promoting mechanisms early in the season. Our aim was to determine if the recommendations for transplant fertilizer solutions and plastic mulch are justified, and if the effects are interactive in a clay loam soil with moderate or high levels of existing phosphorus fertility and organic matter. We transplanted ‘Plum Dandy’ tomato (Solanum lycopersicum) in 2014 and 2015 into a field with high fertility using black polyethylene mulch or no mulch, and transplant solution containing water, 320 mg/plant nitrogen, or 320 mg/plant nitrogen + 475 mg/plant phosphorus. Mulch was removed 26 to 28 days after transplanting to eliminate midseason and late season mulch effects. We found yield-promoting and maturity-hastening effects in both years from transplant solutions containing both nitrogen and phosphorus (18% greater total ripe fruit weight than water control), and similar benefits of early season black plastic mulch (24% greater total ripe fruit weight than no mulch), indicating usefulness of either treatment in tomato production. We found no interactive effects of mulch and transplant solution.
It may seem paradoxical that a teaching assistant (TA), whose involvement in a particular class may be limited to a single semester, can provide continuity in the classroom from year to year. Improvement in TA performance from one year to the next also seems difficult to achieve under such circumstances. However, when TAs are encouraged to document classroom activities, specific TA responsibilities, and student concerns, this documentation may be useful in achieving continuity, improved TA performance, and result in a better classroom experience for the students. In addition to the benefit of documentation, TAs, in conjunction with faculty, can together reflect upon how well the objectives of specific laboratories were met. TAs can contribute to generating and documenting ideas that may be implemented to help improve student learning in the future. Each TA comes to the course with a unique collection of horticultural and teaching experiences and has the potential to aid faculty in course refinement and improvement. We explain how TA-directed documentation can provide continuity and year-to-year improvement in horticulture classrooms using our experience with HORT 3005, a required plant physiology laboratory course specifically targeted to horticulture students at the University of Minnesota.