Search Results

You are looking at 1 - 10 of 54 items for

  • Author or Editor: Charles H. Gilliam x
Clear All Modify Search

The objective of this study was to evaluate the potential use of container substrates composed of whole pine trees. Three species [loblolly pine (Pinus taeda), slash pine (Pinus elliottii) and longleaf pine (Pinus palustris)] of 8–10 year old pine trees were harvested at ground level and the entire tree was chipped with a tree chipper. The chips from each tree species were then further processed with a hammer mill to pass a ½-inch screen. On 29 June 2005 these three substrates along with 100% pinebark were mixed with the addition per cubic yard of 9.49 kg·m–3 Polyon 18–6–12 (18N–2.6P–10K), 2.97 kg·m–3 dolomitic lime and 0.89 kg·m–3 Micromax. One gallon (3.8 L) containers were then filled and placed into full sun under overhead irrigation. Into these containers were planted 72 cell plugs of Catharanthus roseus`Little Blanche'. Data collected were pre-plant chemical and physical properties of substrates, as well as plant growth index (GI), plant top dry weight, root ratings, and plant tissue (leaves) nutrient analysis at 60 days after planting (DAP). The test was repeated on 27 Aug. 2005 with C. roseus Raspberry Red Cooler. Top dry weights were on average 15% greater for the 100% pinebark substrate over all others at 60 DAP. However there were non differences in plant GI for any substrate at 60 DAP. There were no differences in plant tissue macro nutrient content for any substrate. Tissue micronutrient content was similar and within ranges reported by Mills and Jones (1996, Plant Analysis Handbook II) with the exception of Manganese. Manganese was highest for slash and loblolly pine and well over reported ranges. There were no differences in root ratings. There were no differences in substrate physical properties between the three whole tree substrates. However the 100% pinebark substrate had on average 50% less air space and 25% greater water holding capacity than the other substrates. Physical properties of all substrates were within recommended ranges. Based on the results of this study substrates composed of whole pine trees have potential as an alternative sustainable source for a substrate used in producing short term nursery crops.

Free access

Hardy ferns are widely grown for use in the landscape. The 1998 National Agricultural Statistics Services census of horticulture reported production of hardy/garden ferns at 3,107,000 containers from over 1200 nurseries. There is little research on herbicide use in hardy ferns, and herbicides that are labeled for container production are not labeled for use on hardy ferns. Studies were conducted to evaluate the tolerance of variegated east indian holly fern (Arachniodes simplicior `Variegata'), tassel fern (Polystichum polyblepharum), autumn fern (Dryopteris erythrosora), rochford's japanese holly fern (Cyrtomium falcatum `Rochfordianum'), and southern wood fern (Dryopteris ludoviciana), to applications of selected preemergence applied herbicides. Herbicides evaluated included selected granular or liquid applied preemergence herbicides. Spray-applied herbicides were pendimethalin at 3.0 or 6.0 lb/acre, prodiamine at 1.0 or 2.0 lb/acre, isoxaben at 1.0 or 2.0 lb/acre, and prodiamine + isoxaben at 1.0 + 1.0 lb/acre. Granular-applied herbicides were pendimethalin at 3.0 or 6.0 lb/acre, prodiamine at 1.0 or 2.0 lb/acre, oxadiazon + prodiamine at 1.0 + 0.2 or 2.0 + 0.4 lb/acre, oxyfluorfen + oryzalin at 2.0 + 1.0 or 4.0 + 2.0 lb/acre, trifluralin + isoxaben at 2.0 + 0.5 or 4.0 + 1.0 lb/acre, oxadiazon at 4.0 or 8.0 lb/acre, and oxadiazon + pendimethalin at 2.0 + 1.25 or 4.0 + 2.5 lb/acre. The greatest reduction in growth of autumn fern was observed with the high rates of oxadiazon, oxadiazon + pendimethalin, and oxadiazon + prodiamine. Reductions in rochford's japanese holly fern growth were most severe when plants were treated with the high rate of trifluralin + isoxaben resulting in a 66% and 72% decrease in frond length and frond number, respectively. There were also reductions in frond length and number of fronds when treated with the high rate of oxadiazon + pendimethalin. There were no reductions in frond numbers on tassel fern with any herbicides tested. However, there were reductions in frond length from four of the 10 herbicides evaluated. The most sensitive fern to herbicides evaluated in 2004 was variegated east indian holly fern with reductions in frond length and number of fronds with four of the 10 herbicides tested. Southern wood fern appeared to be quite tolerant of the herbicides tested with the exception of the high rate of oxadiazon. Granular prodiamine proved to be a safe herbicide for all species tested in both 2004 and 2005. In 2005 all plants from all treatments were considered marketable by the end of the study. The durations of both studies were over 120 days giving adequate time for any visual injury to be masked by new growth. However, there was significant visual injury observed on the rochford's japanese holly fern treated with isoxaben at 60 and 90 days after treatment, which might reduce their early marketability.

Full access

Herbicide use is an important component of weed management in field nursery crops. No single herbicide controls all weed species. Oxyfluorfen, simazine, and isoxaben are preemergence herbicides effective against broadleaf weeds. Oryzalin, pendimethalin, and prodiamine are effective in preemergence control of grasses and some small-seeded broadleaf weeds. Metolachlor is the only herbicide currently labeled for nursery crops that is effective in preemergence nutsedge (Cyperus) control. Fluazifop-butyl, sethoxydim, and clethodim are selective postemergence herbicides used for grass control. Glyphosate, paraquat, and glufosinate are nonselective postemergence herbicides used in directed spray applications for broad-spectrum weed control. Bentazon, halosulfuron, and imazaquin are effective postemergence nutsedge herbicides. These herbicides are discussed with respect to their chemical class, mode of action, labeled rates, and current research addressing their effectiveness in nursery crops.

Full access

Efficient usage of current water supplies is of great concern to container-nursery producers. Improving water management first requires knowledge of current commercial container production practices. In this study, irrigation distribution from overhead sprinklers was monitored at container nurseries to determine the distribution and the amount of irrigation applied during a typical irrigation cycle. Several nurseries surveyed had poorly designed irrigation systems; subsequently, irrigation distribution varied widely at sampling dates and within the growing-container block. Uniform distribution was achieved at some nurseries, but required careful monitoring of the irrigation system. Future water restrictions may force nurseries to improve water usage by changing irrigation delivery methods to minimize water use, resulting in reduced surface runoff and effluent from container nurseries.

Free access

Experiments were conducted in Auburn, AL, and Aurora, OR, to evaluate herbicides for pre-emergence liverwort (Marchantia polymorpha) control. Granular pre-emergence herbicide efficacy varied by location and product. Summarizing across all experiments, flumioxazin and oxadiazon provided the most effective control in Alabama, whereas flumioxazin and oxyfluorfen + oryzalin provided the most effective control in Oregon. Sprayed quinoclamine provided pre-emergence liverwort control, but efficacy and duration of control were reduced compared with granular herbicides.

Full access

Abstract

Boston fern [Nephrolepsis exaltata (L.) Schott ‘Compacta’] was grown with 3 rates of 2 slow-release fertilizers and with one rate of liquid fertilization. Greatest fern dry weight occurred with ferns grown with liquid fertilization (20N–0.8P–16.6K) or Osmocote (19N–2.5P–8.3K) at the 1.8 kg N/m3 rate. After 16 weeks of simulated commercial production, one-third of the ferns were moved to a low-light interior environment, while one-third were held in the greenhouse. Six weeks later, ferns moved to the interior environment were greener in color, had greater nutrient content, and exhibited less growth than did ferns held in the greenhouse.

Open Access

Abstract

In field production of nursery stock, plant losses may occur after digging but before plants leave the nursery, thereby reducing profitability. Although little information is available, it appears this plant loss may result from moisture stress induced by root pruning at digging and subsequent handling procedures (2, 3). To ensure adequate roots in the rootball, most nurserymen dig root-balls in accordance with the American Standard for Nursery Stock (ASNS) (1), which allows for increasing rootball size with increased shoot growth.

Open Access

Abstract

Postemergence and preemergence control of goosegrass [Eleusine indica (L.) Gaertn.] and large crabgrass [Digitaria sanguinalis (L.) Scop.] were evaluated with clopropoxydim, fenoxaprop-ethyl, xylofop-ethyl, and poppenate-methyl. None of these herbicides was injurious to Rhododendron obtusum ‘Coral Bells’, Ilex crenata ‘Compacta’, Euonymus alatus ‘Compacta’, Juniperus horizontalis ‘Plumosa’, or Thuja occidentalis ‘Pyramidal’ and, depending on rate, provided acceptable grass control. Only xylofop-ethyl at 0.12 kg ha−1 and poppenate-methyl at 1.12 kg·ha−1 consistently provided at least 90% control. Poppenate-methyl also provided preemergence activity for one to six weeks. Chemical names used: (E,E)-2-[l-[[(3-chloro-2-propeny)oxy]imino]butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-eyclohexen-l-one (clopropoxydim); (±)-ethyl 2-[4-[(6-ehloro-2-benzoxazolyl)oxy]phenoxy]propanoate (fenoxapropethyl); 2-[4-[(6-chloro-2-quinoxalinyl)oxy]-phenoxy]propionic acid (xylofop-ethyl); and methyl-3-hydroxy-4[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]-pentanoate (poppenate-methyl).

Open Access

Abstract

Photinia Χ fraseri Dress (Fraser Photinia) plants were dug and burlapped in the morning and afternoon during midsummer with or without previous irrigation or antitranspirant treatment (di-1-p methene = Vapor Gard). Plants were shipped for one day, held for 2 weeks under lath, and then planted. Moisture stress, indicated by shoot water potential, was monitored throughout the study and survival was rated in September. Use of the antitranspirant and morning digging reduced moisture stress of plants. Morning-dug plants had 80% or greater survival even without irrigation. Afternoon digging gave low survival with or without irrigation but afternoon digging plus Vapor Gard gave 100% survival.

Open Access

Abstract

Postemergence applications of 1.1 and 0.6 kg/ha of sethoxydim (2-[l-ethoxyimino) butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-l-one) and fluazifop-butyl (butyl 2-[4-(5-trifluoromethyl-2-pyridyloxy)-phenoxy]propionate), respectively, resulted in 90% control of common bermudagrass (Cynodon dactylon) when applied directly over field-grown ornamentals. Comparable control was achieved by either single application or 2, half-rate, split applications. Of the 12 species tested, only ‘Hexe’ azalea was damaged by applications of fluazifop-butyl to a degree that the plants were unsaleable. All other species exhibited tolerance to both sethoxydim and fluazifop-butyl at the rates required to achieve grass control.

Open Access