Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Charles Graves x
Clear All Modify Search

High glucosinolate content in brassica meal is a limiting factor in consumption of rapeseed. In recent years canola cultivars of rapeseed with decreased glucosinolate content have been developed. However, environmental and nutritional factors are also believed to influence glucosinolate content. This study was conducted to determine the relationships among water stress, B nutrition, and glucosinolate content in canola. Two canola cultivars (`Cyclone' and `American A112') were grown in a continuously recirculating hydroponic system with modified Hoagland solution (0.6 ppm B). Water stress was induced gradually (2% per day using polyethylene glycol 8000) starting when plants were 4 weeks old. Osmotic potential was maintained at –0.1 MPa (high stress level), –0.085 MPa (medium stress), or 0.05 MPa (control). Treatments were arranged in a randomized incomplete-block design, with three blocks, four replications, two cultivars, and three treatments. Upper leaves (no. 15 and higher) were collected and analyzed by inductively coupled plasma emission spectrometry for B content. Total and indole glucosinolate content of seeds were measured colorimetrically and by HPLC. The leaf B content of stressed plants decreased by 55% in `Cyclone' and 29% in `American A112'. Total glucosinolate content increased 28% and 12%, respectively, in stressed plants of `Cyclone' and `American A112'. Indole glucosinolate content was 44% and 13% higher in the same plants. The interaction between cultivar and water stress was not significant for glucosinolate content but was significant for B content of the leaves.

Free access