Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Charles Fontanier x
  • Refine by Access: All x
Clear All Modify Search
Open access

Manoj Chhetri and Charles Fontanier

Objective methods of estimating green coverage using digital image analysis have been used increasingly by turfgrass scientists. The objective of our research was to evaluate the effectiveness of Canopeo, a relatively new smartphone application, for estimating green coverage of bermudagrass (Cynodon dactylon) emerging from winter dormancy, with or without colorants. A field study was conducted on a research ‘U3’ bermudagrass fairway in Stillwater, OK, during Spring 2019 and 2020. The experiment was conducted as a randomized complete block design with three colorant treatments: Endurant Fairway (FW), Endurant Perennial Ryegrass (PR), and an untreated control. Green coverage of the turfgrass canopy was determined weekly from mid-March to early May using a digital camera and ImageJ software, and a smartphone and the Canopeo application. Green coverage estimates from Canopeo correlated strongly (r = 0.91) with those from ImageJ when no colorants were applied. Correlation between Canopeo and ImageJ was diminished under plots treated with colorants. Canopeo is an effective tool for estimating green coverage of living turfgrasses, but additional calibration may be required for acceptable performance when evaluating greenness of colorant-treated turfgrasses.

Open access

Abby Pace, Bruce L. Dunn, and Charles Fontanier

An experiment was conducted to quantify luminescence of white cut flower carnations after exposure to blue glow-in-the-dark powder. Powder was applied to the flowers as either dip (3, 6, or 9 g) or spray (3, 6, or 9 g) solutions in 240 mL of water for 4 seconds plus a control. Stem fresh weight, relative stem fresh weight, flower diameter, and overall solution absorption were greatest on day 4. Only the 6-g dip or spray had greater average flower quality ratings than the control, indicating reduced vase life, but there was no difference among powder treatments. Phosphorescence is possible with fluorescent light, but ultraviolet light increased the flower mean brightness an average of 75% across all treatments. No treatment differences were observed for the flower mean brightness with ultraviolet light, except on day 9; however, greater powder rates without ultraviolet light in general resulted in greater brightness.

Open access

Reagan W. Hejl, Benjamin G. Wherley, and Charles H. Fontanier

Landscape irrigation frequency restrictions are commonly imposed by water purveyors and municipalities to curtail domestic water use and to ensure adequate water supplies for growing populations during times of drought. Currently, published data are lacking concerning irrigation frequency requirements necessary for sustaining acceptable levels of turfgrass quality of commonly used warm-season turfgrass species. The objective of this 3-year field study was to determine comparative turfgrass quality of drought-resistant cultivars of four warm-season lawn species in the south–central United States under irrigation frequency regimes of 0, 1, 2, 4, and 8× monthly. Turfgrasses used in the study were based on previously reported drought resistance and included ‘Riley’s Super Sport’ (Celebration®) bermudagrass [Cynodon dactylon (L.) Pers.], ‘Palisades’ zoysiagrass (Zoysia japonica Steud.), ‘Floratam’ st. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze], and ‘SeaStar’ seashore paspalum (Paspalum vaginatum Swartz). During each growing season, slightly reduced irrigation volumes and bypassed events resulted from the 8× monthly treatment (34.95 cm, 38.13 cm, and 27.33 cm) compared with the 4× monthly treatment (35.36 cm, 40.84 cm, and 28.70 cm) in years 1, 2, and 3, respectively. For the once weekly treatment, the average fraction of reference evapotranspiration (ETo) supplied by effective rainfall and irrigation during the summer months was 1.22, 0.67, and 0.83 in years 1, 2, and 3, respectively, and was generally adequate to support acceptable turfgrass quality of all warm-season turfgrasses evaluated. Under the less than weekly irrigation frequency, st. augustinegrass and seashore paspalum generally fell to below acceptable quality levels because the average fraction of ETo supplied by effective rainfall and irrigation during the summer months of years 2 and 3 was 0.51, 0.39, and 0.26 for the 2× monthly, 1× monthly, and unirrigated treatments, respectively. Bermudagrass generally outperformed all other species under the most restrictive irrigation frequencies and also did not differ statistically from zoysiagrass. These results show that as irrigation frequency is restricted to less than once per week, species selection becomes an important consideration.

Open access

Charles Fontanier, Justin Quetone Moss, Lakshmy Gopinath, Carla Goad, Kemin Su, and Yanqi Wu

Cell and plastid membranes play a critical role in plant response to chilling stress. Fall color retention (chilling tolerance) of bermudagrass (Cynodon sp.) is known to vary with cultivar and management practices. A growth chamber study was conducted to characterize the lipid composition of three bermudagrasses in response to chilling stress. The grasses selected were ‘Tahoma 31’ (chilling-sensitive) and ‘Tifway’ (chilling-tolerant) interspecific hybrid bermudagrass (C. dactylon × C. transvaalensis) and ‘Celebration’ common bermudagrass (C. dactylon), which served as an internal standard. Plants were subjected to simulated fall conditions defined as an 8/2 °C (day/night) temperature regime with 10-hour photoperiod and evaluated for chilling response for 42 days before allowing plants to enter an apparent dormancy. Plant leaves were sampled for lipidomics analysis at 0, 14, and 42 days of chilling treatment (DOT) and again after 40 days of recovery from dormancy (during which temperatures were adjusted to mimic average spring conditions for Oklahoma). ‘Tifway’ demonstrated the lowest electrolyte leakage (EL) and visual discoloration at 42 DOT, while ‘Tahoma 31’ had the greatest EL and discoloration on the same date, and ‘Celebration’ was intermediate of the two. Prolonged exposure to chilling stress generally increased digalactosyldiacylglycerol and phosphatidylcholine (PC) content and decreased monogalactosyldiacylglycerol (MGDG) content, with ‘Tahoma 31’ showing the greatest increase in PC and decrease in MGDG. The double bond index, an indicator of fatty acid unsaturation, was greatest in ‘Tifway’ at 42 DOT. Each cultivar increased in fatty acid unsaturation, with Tifway demonstrating the greatest increase in MGDG unsaturation. Multivariate discriminant analysis identified six individual lipid species that contributed most to the cultivar response to chilling. These findings suggest unsaturation level of plastid lipids, particularly MGDG, is important for chilling tolerance and therefore fall color retention of bermudagrass. Furthermore, this study provides evidence that chilling tolerance can be negatively associated with freezing tolerance in bermudagrass.

Open access

Abby Pace, Bruce L. Dunn, Charles Fontanier, Carla Goad, and Hardeep Singh

Success of the floral industry lies in strengthening the fresh flower market with value-added products. An experiment was conducted to quantify luminescence of cut-flower white carnations after exposure to two fluorescent products (dye from a yellow highlighter or glow-in-the-dark spray paint). Single stems were placed in bud vases that were filled with 240 mL deionized water and 2 g floral preservative. Highlighter treatments were applied to the vase as either one drop, three drops, or half of the dye reservoir (half stick). Paint treatments were applied at 2-, 4-, or 6-second durations to the flowers. Combination treatments were applied as three drops of highlighter dye plus either 2, 4, or 6 seconds of paint application. Treatments were compared against each other and a nontreated control. There were five repetitions of three stems per treatment arranged in a completely randomized design. Measurements were taken daily on stem fresh weight, flower diameter, quality rating, flower maximum brightness, flower mean brightness, relative stem fresh weight percentage, overall solution absorption rate percentage, and daily solution absorption rate. Stem fresh weight, relative stem fresh weight percentage, flower diameter, and overall solution absorption rate were greatest on day 4. Flower maximum brightness without ultraviolet (UV) light was greatest 2 days after treatment (DAT), but still produced a detectable glow through 8 DAT. Among treatments before UV charge, the 6-second paint duration provided the greatest flower maximum brightness value. The half-stick highlighter treatment had the greatest vase mean brightness. All paint treatments reduced flower quality. For each treated flower, the UV charge increased the brightness values, which ranged from 53% to 206% greater than before the UV charge. White carnations can luminesce with spray applications of glow-in-the-dark spray paint or through the stem absorption method using yellow highlighter dye, with the latter being less detrimental to vase life but requiring a UV light source to glow.

Open access

Baoxin Chang, Benjamin Wherley, Jacqueline Aitkenhead-Peterson, Nadezda Ojeda, Charles Fontanier, and Philip Dwyer

Wetting agents have been widely used in the turf industry for ameliorating hydrophobic soil conditions and improving water use efficiency. However, limited information is available regarding potential benefits of wetting agents on fine textured soil lawns where wettable soils are commonly found, because most prior studies have been conducted in sand-based turf systems. This 2-year field study evaluated the potential for wetting agents to improve turf quality, as well as to reduce runoff losses of water and nutrients from st. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] lawns. Over two seasons, turfgrass quality, percent green cover, and soil moisture in plots were evaluated in response to wetting agent and fertilizer treatments. During precipitation events, total runoff volumes were measured, as well as total export of nutrients including NO3-N, NH4-N, total dissolved N, dissolved organic N, dissolved organic C, and PO4-P. No runoff was detected from any treatments when precipitation was less than 13 mm. St. augustinegrass turfgrass quality and soil moisture were slightly improved by wetting agent and fertilizer treatments during the study, but no significant effects of either of the treatments were found on runoff volumes or nutrient exports. Although turf was managed under deficit irrigation levels of 0.3 × reference evapotranspiration, irrigation events were not withheld due to rainfall, and thus, little to no drought stress was observed during the study.

Open access

Hardeep Singh, Megha R. Poudel, Bruce Dunn, Charles Fontanier, and Gopal Kakani

Increase in ambient carbon dioxide (CO2) concentration is beneficial for plant growth due to increased photosynthesis and water use efficiency. A greenhouse study was conducted to investigate how supplemented CO2 influences optimal irrigation and fertilization management for production of two ornamental plants. Two identical greenhouses were used, with one having CO2 supplementation and the other serving as the control with ambient CO2 concentration. Tensiometer-based irrigation treatments were applied at soil tensions of –5, –10, and –15 kPa with 0-, 3-, 6-, or 9-g controlled-release fertilizer rates applied in factorial with irrigation treatments. Plugs of geranium ‘Pinto Premium Rose Bicolor’ and fountain grass were grown under experimental conditions for 12 and 16 weeks, respectively. The results showed that CO2 supplementation increased the dry weight of geranium ‘Pinto Premium Rose Bicolor’ and fountain grass by 35% and 39%, respectively. Under the two driest irrigation regimes (–10 and –15 kPa), photosynthesis of geranium ‘Pinto Premium Rose Bicolor’ increased with CO2 supplementation compared with the ambient condition. Similarly, for fountain grass, the moderately watered (–10 kPa) treatment had a greater rate of photosynthesis with greater fertilizer rates of 6 or 9 g. CO2 supplementation resulted in increased water use efficiency of both species, whereas rate of transpiration was lower only in fountain grass. Among different fertilizer rates, 6- or 9-g fertilizer rates had greater values for dry weight, number of flowers, and stomatal conductance in both species. Therefore, it can be concluded that CO2 supplementation can help in efficient use of water for greenhouse production of ornamental plants.

Open access

Godwin Shokoya, Charles Fontanier, Dennis L. Martin, and Bruce L. Dunn

Consumers desire low-input turfgrasses that have tolerance to both shade and drought stresses. Several sedges (Carex sp.) and nimblewill (Muhlenbergia schreberi) are native plants prevalent in dry woodland ecosystems in Oklahoma, USA, and may have potential as alternatives to conventional species in dry shaded turfgrass systems. To evaluate selected species for this purpose, a multilocation field trial was conducted in Stillwater and Perkins, OK. Four sedges [gray sedge (Carex amphibola), Leavenworth’s sedge (Carex leavenworthii), ‘Little Midge’ palm sedge (Carex muskingumensis), and Texas sedge (Carex texensis)] and nimblewill were evaluated as alternative turfs for the study. Alternative turfs were compared against two conventional turfgrasses [‘El Toro’ Japanese lawngrass (Zoysia japonica) and ‘Riley’s Super Sport’ bermudagrass (Cynodon dactylon)]. The conventional turfgrasses outperformed each sedge and nimblewill in coverage and turf quality. Leavenworth’s sedge, gray sedge, and Texas sedge persisted well but did not spread quickly enough to achieve a dense canopy by the end of the 2-year trial. In contrast, nimblewill established quickly but declined in coverage over time. This study demonstrated some sedges and nimblewill can be established and maintained as a low-input turf in dry shade, but development of unique management practices is still required for acceptable performance.

Free access

Kurt Steinke, David R. Chalmers, Richard H. White, Charles H. Fontanier, James C. Thomas, and Benjamin G. Wherley

As a result of increasing demand for potable water, local and national initiatives to conserve municipal water supplies have been implemented. Many of these initiatives focus on reducing irrigation of turfgrass in urban landscapes and may totally ban irrigation during periods of severe water shortage. Proper selection of adapted turfgrass species and cultivars is vital to long-term water conservation initiatives. Turfgrasses that can survive and recover from extended hot and dry periods under limited to no irrigation would best meet water conservation objectives. The present study was conducted to evaluate the recuperative potential of transplanted plugs of 24 commonly grown cultivars of three warm-season turfgrass species after incremental increases in water stress imposed by withholding all water for up to 60 days. A 2-year field study was conducted consisting of eight blocks containing 25 plots each. Each block was planted with one plot each of eight cultivars of bermudagrass (Cynodon dactylon sp.), seven cultivars of st. augustinegrass (Stenotaphrum secundatum sp.), and nine cultivars of zoysiagrass (five of Zoysia japonica sp. and four of Zoysia matrella sp.). Four blocks were planted on native soil with no restriction to rooting, whereas the other four had an effective root zone of only 10 cm of soil. Cup cutter plugs were collected at predetermined intervals, transported to College Station, TX, replanted, and grown under well-watered conditions. Measurements of the lateral spread of the plugs were taken every 10 to 14 days for the first 60 to 70 days after planting (DAP). The lateral spread of plugs collected after 0 days of summer dry-down (DSD) was greatest for bermudagrass, intermediate for st. augustinegrass, and lowest for zoysiagrass. In most cases there were no consistent differences between cultivars within a species. All species grown on the 10-cm deep root zone were unable to survive the 60-day period without water and died within the first 40 days. For each species, lateral spread was increasingly delayed or reduced with increasing DSD. Although all three species grown on native soil were able to survive and recover from a 60-day period without water, the bermudagrass cultivars had the most rapid recovery rates measured as lateral spread of transplanted plugs.