Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Charles Fontanier x
Clear All Modify Search
Open access

Charles Fontanier, Justin Quetone Moss, Lakshmy Gopinath, Carla Goad, Kemin Su and Yanqi Wu

Cell and plastid membranes play a critical role in plant response to chilling stress. Fall color retention (chilling tolerance) of bermudagrass (Cynodon sp.) is known to vary with cultivar and management practices. A growth chamber study was conducted to characterize the lipid composition of three bermudagrasses in response to chilling stress. The grasses selected were ‘Tahoma 31’ (chilling-sensitive) and ‘Tifway’ (chilling-tolerant) interspecific hybrid bermudagrass (C. dactylon × C. transvaalensis) and ‘Celebration’ common bermudagrass (C. dactylon), which served as an internal standard. Plants were subjected to simulated fall conditions defined as an 8/2 °C (day/night) temperature regime with 10-hour photoperiod and evaluated for chilling response for 42 days before allowing plants to enter an apparent dormancy. Plant leaves were sampled for lipidomics analysis at 0, 14, and 42 days of chilling treatment (DOT) and again after 40 days of recovery from dormancy (during which temperatures were adjusted to mimic average spring conditions for Oklahoma). ‘Tifway’ demonstrated the lowest electrolyte leakage (EL) and visual discoloration at 42 DOT, while ‘Tahoma 31’ had the greatest EL and discoloration on the same date, and ‘Celebration’ was intermediate of the two. Prolonged exposure to chilling stress generally increased digalactosyldiacylglycerol and phosphatidylcholine (PC) content and decreased monogalactosyldiacylglycerol (MGDG) content, with ‘Tahoma 31’ showing the greatest increase in PC and decrease in MGDG. The double bond index, an indicator of fatty acid unsaturation, was greatest in ‘Tifway’ at 42 DOT. Each cultivar increased in fatty acid unsaturation, with Tifway demonstrating the greatest increase in MGDG unsaturation. Multivariate discriminant analysis identified six individual lipid species that contributed most to the cultivar response to chilling. These findings suggest unsaturation level of plastid lipids, particularly MGDG, is important for chilling tolerance and therefore fall color retention of bermudagrass. Furthermore, this study provides evidence that chilling tolerance can be negatively associated with freezing tolerance in bermudagrass.

Free access

Kurt Steinke, David R. Chalmers, Richard H. White, Charles H. Fontanier, James C. Thomas and Benjamin G. Wherley

As a result of increasing demand for potable water, local and national initiatives to conserve municipal water supplies have been implemented. Many of these initiatives focus on reducing irrigation of turfgrass in urban landscapes and may totally ban irrigation during periods of severe water shortage. Proper selection of adapted turfgrass species and cultivars is vital to long-term water conservation initiatives. Turfgrasses that can survive and recover from extended hot and dry periods under limited to no irrigation would best meet water conservation objectives. The present study was conducted to evaluate the recuperative potential of transplanted plugs of 24 commonly grown cultivars of three warm-season turfgrass species after incremental increases in water stress imposed by withholding all water for up to 60 days. A 2-year field study was conducted consisting of eight blocks containing 25 plots each. Each block was planted with one plot each of eight cultivars of bermudagrass (Cynodon dactylon sp.), seven cultivars of st. augustinegrass (Stenotaphrum secundatum sp.), and nine cultivars of zoysiagrass (five of Zoysia japonica sp. and four of Zoysia matrella sp.). Four blocks were planted on native soil with no restriction to rooting, whereas the other four had an effective root zone of only 10 cm of soil. Cup cutter plugs were collected at predetermined intervals, transported to College Station, TX, replanted, and grown under well-watered conditions. Measurements of the lateral spread of the plugs were taken every 10 to 14 days for the first 60 to 70 days after planting (DAP). The lateral spread of plugs collected after 0 days of summer dry-down (DSD) was greatest for bermudagrass, intermediate for st. augustinegrass, and lowest for zoysiagrass. In most cases there were no consistent differences between cultivars within a species. All species grown on the 10-cm deep root zone were unable to survive the 60-day period without water and died within the first 40 days. For each species, lateral spread was increasingly delayed or reduced with increasing DSD. Although all three species grown on native soil were able to survive and recover from a 60-day period without water, the bermudagrass cultivars had the most rapid recovery rates measured as lateral spread of transplanted plugs.