Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Charlene M. Grahn x
Clear All Modify Search

Baby-leaf salad green crops such as lettuce (Lactuca sativa), kale (Brassica oleracea), arugula (Eruca sativa), and mustard greens (Brassica juncea) thrive in the cool, humid climate of the maritime Pacific Northwest, particularly in the extended spring and fall seasons. To identify cultivars best suited for extended-season production in northwest Washington, nine leafy green cultivars were grown at two locations in the spring and fall seasons for 2 years. A high level of variability in crop performance was observed between seasons, locations, years, planting dates, and cultivars, indicating low-yield stability in baby-leaf salad crops across diverse environments and conditions. Overall, cultivars had a higher marketable weight in the spring than in the fall. Marketable weight was higher in Spring 2013 than in Spring 2014, and was higher in Fall 2013 than in Fall 2012. Days to harvest (DTH) were shorter in the spring than in the fall both years, and in both seasons DTH varied by ≈1 week between the two trial locations. Fresh weed biomass was almost 5.5 times higher in spring than in fall both years. Overall, pak choi ‘Joi Choi’ and mustard ‘Komatsuna’ had the highest marketable weight, lowest DTH, and lowest weed biomass across the widest range of environments and conditions, while beet ‘Bull’s Blood’ had the lowest marketable weight, relatively long DTH and highest weed biomass. These results suggest that baby-leaf salad crop cultivar selection differs for spring and fall seasons, and production can be highly variable between years and locations. Further, results suggest that growers should plant a diversity of crop cultivars each season to protect from crop loss and to achieve overall yield stability.

Free access

Low temperatures can slow down emergence, decrease weed competitiveness, and lead to uneven crop maturity in direct-seeded crops such as baby leaf lettuce (Lactuca sativa L.). In this study, seeds of 103 single-parent lineage, homozygous lettuce accessions (53 cos and 50 leaf type) from the USDA National Plant Germplasm System (NPGS) and six commercial standard lettuce cultivars (three cos and three leaf type) were evaluated in replications for percent germination after 7 and 10 days at 5 °C in a germination chamber. Cos and leaf types were selected for this study as they are most commonly used for baby leaf lettuce production. Differences were observed among entries in percent seeds germinated after both 7 and 10 days. Overall, an average of 68% of seeds germinated after 7 days and 94% germinated after 10 days. Although several NPGS accessions had higher percent germination than the commercial cultivars, the average percent germination was not statistically different between the two seed sources at 7 or 10 days. Percent germination also did not differ between entries of cos and leaf type after 7 or 10 days. Similarly, no difference in percent germination between entries of dark and white seed color was observed after 7 or 10 days. No relationship between 100 seed weight and percent germination was observed after 7 days (r 2 = 0.07) or 10 days (r 2 = 0.13). Thus, lettuce seed type, color, and 100 seed weight do not appear to be good predictors of germination under cold conditions in lettuce. The accessions with the highest percent germination after 7 days at 5 °C have the potential to be used for the development of new lettuce cultivars suitable for an extended, early season production in temperate climates when soil temperature is lower than optimal for lettuce germination. Further studies are needed to assess the ability of these accessions to germinate rapidly under cold field soil conditions.

Free access