Search Results
Camellia oleifera is an important woody edible oil plant in southern China. In this study, the developmental differences in ovules at different positions in the ovary of C. oleifera were observed. The developmental type and characteristics of aborted ovules, ratios of normal and aborted ovules, and their developmental differences after flowering were examined. Ovules near the stylar end and in the middle exhibit normal development and are able to form embryo sacs; lower ovules near the pedicel end are usually aborted. The proportion of abortion of four examined cultivars ranges from 10.2% to 33.3%. Aborted ovules can be divided into four categories: 1) nascent egg apparatus lacking distinguishable cells; 2) completely absent egg apparatus structure consisting of flocculent tissue; 3) lack of tissue, comprising only integument cells; and 4) the inner integument not constituting a micropyle channel, with incomplete egg apparatus development and generating abnormal ovules. At 120 days after pollination (DAP), significant distinguishable size differences were found between fertile and aborted ovules; aborted ovules ceased growth at 180 DAP. On fruit maturation, aborted seeds were still attached to the placenta.
The mechanism by which calcium regulates anther development remains unclear. This study investigated the relationship between calcium distribution and anther development in oil tea (Camellia oleifera Abel.) by using the potassium antimonite technique. Before the onset of microsporogenesis, abundant minute calcium precipitates appeared on the plasma membranes of microspore mother cells. Meanwhile, numerous precipitates accumulated in the tapetal cells. After meiosis, calcium precipitates appeared in young microspores. During microspore development, calcium precipitates mainly appeared in the small vacuoles of the cytoplasm. At the late microspore stage, a large vacuole formed, and the number of precipitates in the microspore decreased. The number of precipitates in the tapetal cells decreased as microsporogenesis proceeded. Then, calcium precipitates in the bicellular pollen cytoplasm again increased in number. During bicellular pollen development, the number of calcium precipitates decreased. As the pollen grains matured, only a few calcium precipitates were evident in the pollen cytoplasm. The results of this study, which show the spatial and temporal features of calcium distribution during the anther development of C. oleifera, suggest that calcium distribution is related to anther development.
Camellia oleifera, a major woody oil plant, has a low oil yield because of self-incompatibility. For commercial oil production, compatible pollen and optimal cross-pollination combinations are required. To evaluate the effects of pollination compatibility and pollen source on oil yield and quality, four C. oleifera cultivars—Huashuo (HS), Huajin (HJ), Huaxin (HX), and Xianglin XLC15 (XL)—were subjected to self-, cross-, and natural pollination. Pollen compatibility, oil yield, and quality indices were analyzed. There were no significant differences in pollen germination and tube growth between self- and cross-pollination. Following self-pollination, fertilization was unsuccessful, resulting in severe ovule dysplasia; cross-pollination decreased the ovule abortion rate. Pollen source significantly affected the fruit set, fruit traits, seed traits, and fatty acid content, implying xenia in C. oleifera. In cross-pollinated plants, HX pollen produced more seeds, and HJ pollen increased linoleic acid content relative to naturally pollinated plants. For the XL and HS combinations, linolenic acid contents were significantly higher than other pollination combinations. However, oleic acid content was not significantly affected by pollen source, in any of the cultivars. Cultivar HX was, therefore, the most effective pollen donor, and HS × HX was the optimal cross-pollination combination for improving oil yield and sustainability.
This study aimed to investigate the flowering biological characteristics, floral organ characteristics, and pollen morphology of Camellia weiningensis Y.K. Li. These features of adult C. weiningensis plants were observed via light microscopy and scanning electron microscopy (SEM). Pollen viability and stigma receptivity were detected using 2,3,5-triphenyltetrazole chloride (TTC) staining and the benzidine–hydrogen peroxide reaction method. C. weiningensis is monoecious, with alternate leaves and glabrous branchlets. Its flowering period lasts 2 to 4 months, and the flowering time of individual plants lasts ≈50 days, with the peak flowering period from the end of February to the middle of March. It is a “centralized flowering” plant that attracts a large number of pollinators. Individual flowers are open for 12 to 13 days, mostly between 1230 and 1630 hr, and include four to six sepals, six to eight petals, ≈106 stamens, an outer ring of ≈24.6-mm-long stamens, an inner ring of ≈13.4-mm-long stamens, one pistil, and nine to 12 ovules. The flowers are light pink. The style is two- to three-lobed and 16.6 mm long, showing a curly “Y” shape. The contact surface of the style is covered with papillary cells and displays abundant secretory fluid and a full shape, facilitating pollen adhesion. The pollen is rhombohedral cone-shaped, and there are germ pores (tremoids). The groove of the germ pore is slender and extends to the two poles (nearly reaching the two poles). The pollen is spherical in equatorial view and trilobate in polar view. The pollen vitality was highest at the full flowering stage, and the stigma receptivity was greatest on days 2 to 3 of flowering. The best concentration of sucrose medium for pollen germination was 100 g/L. The number of pollen grains per anther was ≈2173, and the pollen-to-ovule ratio was 23,034:1. C. weiningensis is cross-pollinated. Seventy-two hours after cross-pollination, the pollen tube reached the base, and a small part entered the ovary. The time when the pollen tube reached the base after pollination was later than that in commonly grown Camellia oleifera. The results of this study might lay an important foundation for the flowering management, pollination time selection, and cross-breeding of C. weiningensis.
Petalized anther abortion is an important characteristic of male sterility in plants. The male sterile plants (HB-21) evincing petalized anther abortion previously discovered in a clone population of the Camellia oleifera cultivar Huashuo by our research group were selected as the experimental material in this study. Using plant microscopy and anatomic methods and given the correspondence between external morphology and internal structure, we studied the anatomic characteristics of petalized anther abortion (with a fertile plant as the control group) in various stages, from flower bud differentiation to anther maturity, in hopes of providing a theoretical basis for research on and applications of male sterile C. oleifera plants, a new method for the selection of male sterile C. oleifera cultivars, and improvements in the yield and quality of C. oleifera. In this study, the development of anthers in C. oleifera was divided into 14 stages. Petalized anther abortion in male sterile plants was mainly initiated in the second stage (the stage of sporogenous cells). Either the petalized upper anther parts did not form pollen sacs, or the entire anthers did not form pollen sacs. The lower parts of some anthers could form deformed pollen sacs and develop, and these anthers could be roughly divided into two types: fully and partially petalized anthers. Abnormal callose and the premature degradation of the tapetum occurred in the pollen sacs formed by partially petalized anthers during the development process, resulting in the absence of inclusions in the pollen grains formed. Small quantities of mature pollen grains withered inward from the germinal furrows, exhibiting obvious abortion characteristics. The relative in vitro germination rate of the pollen produced by the partially petalized anthers of sterile plants was 11.20%, and the relative activity of triphenyltetrazolium chloride was 3.24%, while the fully petalized anthers did not generate pollen grains. Either the petalized anthers in male sterile plants did not produce pollen, or the vitality of the small amounts of pollen produced by sterile plants was very low compared with that of fertile plants. Such male sterile plants could be used to select correct clones and have good prospects for application in production.
Camellia weiningensis is a typical woody edible oil tree species in the northwest alpine area of Guizhou Province, China, but its embryological development is not fully elucidated. Here, we assessed flower bud differentiation, microsporogenesis, and male-female gametophyte development in this species. We performed cytological observations of flower bud development in C. weiningensis through conventional paraffin sectioning, scanning electron microscopy, and stereomicroscopy to establish the corresponding relationships between the external morphology and internal structure. The flowers were hermaphroditic and exhibited a short flower bud differentiation time. Although pistil development occurred later than stamen development, both organs matured synchronously before flowering. The anther contained four sacs that exhibited a butterfly shape in transverse sections. The anther wall comprised the epidermis, anther chamber inner wall, two middle layers, and a glandular tapetum (from outside to inside). Microspore mother cells formed a tetrahedral tetrad through meiosis, mature pollen was two-celled with three germination pores, and the ovary comprised three to five chambers (three chambers predominated). Multiple ovules were invertedly attached to the axial placentation and exhibited double integuments and a thin nucellus. The embryo sac exhibited Allium-type development, and the mature embryo sac was seven-celled and eight-nucleated. In C. weiningensis, embryonic development does not exhibit abnormalities, and stamen development occurs earlier than pistil development. During flower bud development, the inner development process of male and female cells can be judged according to their external morphological characteristics. Our results may provide a theoretical basis for regulating flowering in and the cross-breeding of C. weiningensis.
Camellia oleifera is an important plant species that produces edible oils. Understanding the double fertilization of this plant is critical for studies concerning crossbreeding, self-incompatibility, and the biological mechanisms underlying hybridization. We aimed to characterize pollen tube growth and double fertilization in C. oleifera. The female and male parent cultivars (Huashuo and Xianglin XLC15, respectively) were used for artificial pollination. Growth of the pollen tube in the style, ovary, and ovule from pollination to fertilization and the cytological characteristics of female and male gamete fusion during double fertilization were observed using fluorescence and scanning electron microscopy (SEM). Numerous pollen grains germinated 2 to 4 hours after pollination. The pollen tubes entered the interspaces between the papillar cells, grew along the stylar canal, and aggregated at the one-third site of the style. They grew in the gradually narrowing stylar canal, entering the locule. The tubes turned 90° and entered the embryo sac through the micropyle; subsequently, they entered a degenerated synergid, where the spermatids were released. One sperm nucleus fused with the polar nucleus, forming the primary endosperm nucleus, whereas the other sperm fused with the egg, forming the zygote. The polar nucleus was fertilized earlier than the egg. Double fertilization of C. oleifera is characterized as pre-mitotic gametogony. The current results lay a theoretical foundation for studies concerning the crossbreeding and embryology of C. oleifera and provide fundamental data concerning the reproductive biology of the genus Camellia.