Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Celeste A. Gilbert x
Methyl bromide (MB) has been widely used in California cut-flower production for effective control of a broad range of soil pests, including plant pathogens and weeds. However, MB is an ozone-depleting substance, and its availability to growers is limited according to the Montreal Protocol guidelines. Steam has been suggested as a nonchemical option for preplant soil disinfestation. Five trials were conducted in protected greenhouse structure or open-field cut-flower nurseries in Monterey, San Luis Obispo, and Ventura counties to evaluate the effect of steam application, alone or in combination with solarization, on soilborne plant pathogen populations, weed densities, and crop growth. Several steam application methods were used including steam blanket, spike-hose, buried drip irrigation lines, or drain tile, and these varied among trials. Calla lily (Zantedeschia aethiopica) nursery trials initiated in 2007 and 2008 showed that steam alone or with solarization was similar to or more effective than MB:chloropicrin (MBPic), applied via drip lines, in controlling weeds and Verticillium dahliae at 6-inch depth. Trials conducted in Spring and Fall 2009 in an oriental hybrid lily (Lilium sp.) nursery showed that, 112 days after steam treatment (DAT) in the spring, the steam (spike-hose) treatment had fewer Fusarium oxysporum propagules than the MB treatment. Lily plant growth in the steam-treated plots was similar to MB-treated plots and taller than in control plots. In the fall trial, fewer lily plants emerged by 44 DAT in the untreated control than in steam- and MB-treated plots and steam was not as effective as MB in reducing Pythium populations. In the 2010 sunflower (Helianthus annuus) and bupleurum (Bupleurum griffithii) trial, all steam treatments reduced Pythium and Phytophthora cactorum survival compared with the untreated control plots, whereas weed densities were reduced only in the spike-hose steam-treated plots. These trial studies showed that steam appeared as effective as MB in suppressing pathogens and weeds and improving crop growth in cut-flower nurseries. However, additional information on fuel consumption, treatment time efficiency, and long-term effects of steam treatment on soil health are needed before steam can be recommended as a viable alternative to MB in California cut-flower nurseries.
The phase-out of methyl bromide as a soil fumigant for strawberry (Fragaria ×ananassa, Duch.) and increasingly strict regulations of all fumigants suggest that non-fumigant methods of soil disinfestation are needed. In warm climates, solarization controls soilborne pests, but fog and lower summer soil temperatures in coastal California render it unsuitable for pest control relative to chemical fumigation. The first objective of this study was to test the efficacy of steam in controlling soil pests in strawberry production. The second objective was to determine if combining solarization with steam in coastal California would achieve greater pest control and higher yields compared with steam or solarization used alone. The final objective was to determine the economic feasibility of steam and solarization treatments relative to MBPic fumigation. Field studies were conducted at Salinas, CA, in 2007–2008 and in 2008–2009 growing seasons. Treatments included MBPic 67/33% v/v at 392 kg·ha−1, untreated control, solarization, steam, and steam + solarization. For steam + solarization plots, beds were solarized for 2 weeks before and 2 weeks after steam application. Before application of a clear film for solarization, beds were irrigated so the soil moisture was optimal for solarization. Steam was injected into the beds to reach soil temperatures to 70°C or higher up to a depth of 25 cm for 20 min. Soil temperatures during steam and solarization treatments were monitored. Control of soil pests was measured using pathogen and weed propagule bioassays in all treatments. After the 4-week treatment period, ‘Albion’ strawberry was transplanted in all plots. After transplanting, weed density, weed fresh biomass, and hand weeding time were recorded periodically in each treatment over the cropping season. Weed seed viability in steam and steam + solarization-treated plots was the same or lower than MBPic standard fumigation. Compared with MBPic fumigation, solarization alone was less effective in controlling weeds or reducing the hand-weeding time. Steam and steam + solarization treatments resulted in weed control similar to MBPic fumigation. Only certain steam treatments reduced the number of Verticillium dahliae Kleb. microsclerotia similar to the MBPic fumigation at 15-cm depth with no reductions at greater depths. There were no significant differences among treatments in 2007–2008 with regard to yield, but in 2008–2009, yields from steam treatments were comparable to the MBPic-treated plots. Economic analysis performed for the 2008–2009 season showed that net returns from steam or solarization treatments were less than MBPic treatment.