Search Results
The most recent platform for protected horticultural crop production, with the shortest history to date, is located entirely indoors, lacking even the benefit of free, natural sunlight. Although this may not sound offhand like a good idea for commercial specialty-crop production, the concept of indoor controlled-environment plant growth started originally for the benefit of researchers—to systematically investigate effects of specific environmental factors on plant growth and development in isolation from environmental factors varying in uncontrolled ways that would confound or change experimental findings. In addition to its value for basic and applied research, it soon was discovered that providing nonlimiting plant-growth environments greatly enhanced crop yield and enabled manipulation of plant development in ways that were never previously possible. As supporting technology for indoor crop production has improved in capability and efficiency, energy requirements have declined substantially for growing crops through entire production cycles in completely controlled environments, and this combination has spawned a new sector of the controlled-environment crop-production industry. This article chronicles the evolution of events, enabling technologies, and entrepreneurial efforts that have brought local, year-round indoor crop production to the forefront of public visibility and the threshold of profitability for a growing number of specialty crops in locations with seasonal climates.
Following is the invited perspective of an academic researcher and director of a multi-institutional research and education project tasked to test the feasibility of adopting light-emitting diode (LED) technology for application by the commercial horticulture industry. Academics researching basic specialty-crop responses to spectra, intensities, and durations of lighting with LEDs often find technical queries from growers, vendors, and entrepreneurs to go beyond the capabilities and scope of systematic research to answer definitively. Differences between commercial and academic research approaches to LED technology development are noted, including legal obstacles to open collaboration. Early generation commercial LED technology for horticultural applications is based on research begun >20 years ago. The basis for selection of various LED wavebands for inclusion in LED plant growth arrays is presented for both commercial as well as research applications. Advantages of light distribution from LED sources for different crop applications are presented, especially including close-canopy and intracanopy lighting, both of which contribute substantially to energy savings. Challenges to providing accurate LED light prescriptions for different crops are discussed, including those for supplemental lighting as well as for sole-source lighting applications. Anticipated trends are projected for horticultural applications of LED technology, including multispectral, individually adjustable, high-intensity arrays; increasing electrical efficacy of future LEDs; and reduced costs of mass production for particular applications.
The day-neutral, semidwarf rice (Oryza sativa L.) cultivar Ai-Nan-Tsao was grown in a greenhouse under summer conditions using high-pressure sodium lamps to extend the natural photoperiod. After allowing 2 weeks for germination, stand establishment, and thinning to a consistent planting density of 212 plants/m2, stands were maintained under continuous lighting for 35 or 49 days before shifting to 8- or 12-h photoperiods until harvest 76 days after planting. Non-shifted control treatments consisting of 8-, 12-, or 24-h photoperiods also were maintained throughout production. Tiller number increased as duration of exposure to continuous light increased before shifting to shorter photoperiods. However, shoot harvest index and yield efficiency rate were lower for all plants receiving continuous light than for those under the 8- or 12-h photoperiods. Stands receiving 12-h photoperiods throughout production had the highest grain yield per plant and equaled the 8-h-photoperiod control plants for the lowest tiller number per plant. As long as stands were exposed to continuous light, tiller formation continued. Shifting to shorter photoperiods late in the cropping cycle resulted in newly formed tillers that were either sterile or unable to mature grain before harvest. Late-forming tillers also suppressed yield of grain in early-forming tillers, presumably by competing for photosynthate or for remobilized assimilate during senescence. Stands receiving 12-h photoperiods throughout production not only produced the highest grain yield at harvest but had the highest shoot harvest index, which is important for resource-recovery strategies in advanced life-support systems proposed for space.
A major source of power consumption in controlled-environment crop production is plant-growth lighting. Methods developed to minimize this source of power consumption will reduce the negative environmental impact of crop production through more-efficient management of non-renewable resources. One such method uses “intracanopy lighting,” in which the plants are allowed to grow through multiple levels of low-intensity lamps to irradiate the understory that normally is shaded when traditional overhead lighting is used. Early results with cowpea (Vigna unguiculata L. Walp `IT87D-941-1') indicate a significant reduction in net power consumption within a given growth area or volume while enhancing the harvest index (HI = percent edible biomass). Incorporation of mylar reflectors and manipulation of lamp geometries for more-efficient use of available photosynthetically active radiation, while maintaining low power consumption are the focus of present experiments. Photosynthetic rates by leaves of different ages and positions within the canopy are measured as a way of determining lighting efficiency. The productivity parameters HI, edible yield rate (EYR = gDW × m–2 × day–1), yield efficiency rate (YER = gDW edible × m–2 × day–1 [gDW non-edible]-1), energy conversion efficiency (ECE = EYR × [kW·h]–1), and energy partition efficiency (EPE = YER × [kW·h]–1) express the costs of edible biomass production in terms of the spatial, temporal, energetic, and non-edible biomass penalties. [Research supported in part by NASA grant NAGW-2329.]