Search Results

You are looking at 1 - 10 of 48 items for

  • Author or Editor: Cary A. Mitchell x
Clear All Modify Search

Following is the invited perspective of an academic researcher and director of a multi-institutional research and education project tasked to test the feasibility of adopting light-emitting diode (LED) technology for application by the commercial horticulture industry. Academics researching basic specialty-crop responses to spectra, intensities, and durations of lighting with LEDs often find technical queries from growers, vendors, and entrepreneurs to go beyond the capabilities and scope of systematic research to answer definitively. Differences between commercial and academic research approaches to LED technology development are noted, including legal obstacles to open collaboration. Early generation commercial LED technology for horticultural applications is based on research begun >20 years ago. The basis for selection of various LED wavebands for inclusion in LED plant growth arrays is presented for both commercial as well as research applications. Advantages of light distribution from LED sources for different crop applications are presented, especially including close-canopy and intracanopy lighting, both of which contribute substantially to energy savings. Challenges to providing accurate LED light prescriptions for different crops are discussed, including those for supplemental lighting as well as for sole-source lighting applications. Anticipated trends are projected for horticultural applications of LED technology, including multispectral, individually adjustable, high-intensity arrays; increasing electrical efficacy of future LEDs; and reduced costs of mass production for particular applications.

Free access

The most recent platform for protected horticultural crop production, with the shortest history to date, is located entirely indoors, lacking even the benefit of free, natural sunlight. Although this may not sound offhand like a good idea for commercial specialty-crop production, the concept of indoor controlled-environment plant growth started originally for the benefit of researchers—to systematically investigate effects of specific environmental factors on plant growth and development in isolation from environmental factors varying in uncontrolled ways that would confound or change experimental findings. In addition to its value for basic and applied research, it soon was discovered that providing nonlimiting plant-growth environments greatly enhanced crop yield and enabled manipulation of plant development in ways that were never previously possible. As supporting technology for indoor crop production has improved in capability and efficiency, energy requirements have declined substantially for growing crops through entire production cycles in completely controlled environments, and this combination has spawned a new sector of the controlled-environment crop-production industry. This article chronicles the evolution of events, enabling technologies, and entrepreneurial efforts that have brought local, year-round indoor crop production to the forefront of public visibility and the threshold of profitability for a growing number of specialty crops in locations with seasonal climates.

Open Access

Photoperiod and harvest scenario of cowpea (Vigna unguiculata L. Walp) canopies were manipulated to optimize productivity for use in future controlled ecological life-support systems. Productivity was measured by edible yield rate (EYR: g·m-2·day-1), shoot harvest index (SHI: g edible biomass·[g total shoot dry weight]), and yield-efficiency rate (YER: g edible biomass·m-2·day-1per [g nonedible shoot dry weight]). Breeding lines `IT84S-2246' (S-2246) and `IT82D-889' (D-889) were grown in a greenhouse under 8-, 12-, or 24-h photoperiods. S-2246 was short-day and D-889 was day-neutral for flowering. Under each photoperiod, cowpeas were harvested either for leaves only, seeds only, or leaves plus seeds (mixed harvest). Photoperiod did not affect EYR of either breeding line for any harvest scenario tested. Averaged over both breeding lines, seed harvest gave the highest EYR at 6.7 g·m-2·day-1. The highest SHI (65%) and YER (94 mg·m-2·day-1·g-1) were achieved for leaf-only harvest of D-889 under an 8-h photoperiod. For leaf-only harvest of S-2246, both SHI and YER increased with increasing photoperiod, but declined for seed-only and mixed harvests. However, photoperiod had no effect on SHI or YER for D-889 for any harvest scenario. A second experiment utilized the short-day cowpea breeding line `IT89KD-288' (D-288) and the day-neutral breeding line `IT87D-941-1' (D-941) to compare yield parameters using photoperiod extension under differing lamp types. This experiment confirmed the photoperiod responses of D-889 and S-2246 to a mixed-harvest scenario and indicated that daylength extension with higher irradiance from high pressure sodium lamps further suppressed EYR, SHI, and YER of the short-day breeding line D-288.

Free access

The vigorous growth habit and tolerances to heat, water, and acid stresses suggest cowpea as a candidate species for Controlled Ecological Life-Support Systems (CELSS). The low fat, high protein, moderate carbohydrate content of the edible leaves and seeds complement cereal grains in the vegetarian diets planned for CELSS. Cowpea canopy densities of 3.6, 7.2, 10.7, and 14.3 plants·m-2 were grown under CO2 levels of 400 or 1200 μl·l-1. Plants were grown in a deep-batch recirculating hydroponic system. pH was maintained at 5.5 by a pH controller with an in-line electrode. The nutrient solution was replaced as needed and sampled weekly for analysis by inductively coupled plasmaatomic emission spectrometry. Fluorescent lights provided 674±147 μmol·m-2s-1 PAR for an 8-hour photoperiod. Day/night temperature was maintained at 27/25°C. CO2 draw-down within the growth chamber was measured to calculate net photosynthesis. Power consumption was metered and canopy quantum efficiency was calculated. Crop yield rate (g·m-2·d-1). harvest index (% edible biomass), and yield efficiency (edible g·m-2·d-1·(nonedible g)-1) were determined to evaluate the productivity of cowpea for a CELSS. This study was supported by NASA Grant NAGW-2329.

Free access

The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (g S) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (A max) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well.

Free access