Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Carol Russell x
Clear All Modify Search

Aquaponics, an integrated system with both hydroponic plant production and aquaculture fish production, is an expanding alternative agriculture system. Many key questions about the overall feasibility of aquaponic systems remain unanswered. Of particular concern for start-up and established producers alike are consumer perceptions and willingness to pay for aquaponic produce and fish. This study reports results and analysis of a consumer survey about perceptions and preferences for aquaponic-grown products that was conducted in Minnesota during Feb. 2016. Probit and ordered probit models are used to evaluate the probability of different consumer demographic segments having various levels of knowledge and perceptions about aquaponics. About one-third of respondents had previously heard of aquaponics, and upon learning more about the system through the survey, respondents tended to be generally neutral or favorable to aquaponics. Price might be an issue for many consumers, but many tend to believe that aquaponics can impact the environment in a positive way. The results represent a first step toward building knowledge about the potential consumer base for aquaponics, which is a critical piece in the system’s potential overall profitability. It appears that consumer education and marketing will be key for the expansion of the market.

Full access

Field studies were conducted during 2010 and 2011 in Knoxville, TN; Lubbock, TX; and Mount Vernon, WA; to compare high tunnel and open-field organic production systems for season extension and adverse climate protection on lettuce (Lactuca sativa) yield and quality. The climates of these locations are diverse and can be typified as hot and humid (Knoxville), hot and dry (Lubbock), and cool and humid (Mount Vernon). In both years, 6-week-old lettuce seedlings of ‘New Red Fire’ and ‘Green Star’ (leafy type), ‘Adriana’ and ‘Ermosa’ (butterhead type), and ‘Coastal Star’ and ‘Jericho’ (romaine type) were transplanted in the late winter or early spring into subplots covered with black plastic and grown to maturity (43 to 65 days). Lettuce harvest in Knoxville occurred at 50 to 62 days after transplanting (DAT), with open-field lettuce harvested an average of 9 days earlier compared with high tunnel plots both years (P > 0.0001). The earlier than anticipated harvests in the open-field in Knoxville in 2010 were due to lettuce bolting. In Lubbock, high tunnel lettuce was harvested an average 16 days earlier in 2010 compared with open-field lettuce (P > 0.0001), while in 2011, high temperatures and bolting required that open-field lettuce be harvested 4 days earlier than lettuce grown in high tunnels. On average, lettuce cultivars at Mount Vernon matured and were harvested 56 to 61 DAT in 2010 and 54 to 64 DAT in 2011 with no significant differences between high tunnel and open-field production systems. Total and marketable yields at Mount Vernon and Lubbock averaged across cultivars were comparable in both high tunnel and open-field plots. At Knoxville, although total yields were significantly higher (P > 0.0062) in high tunnels than open-field plots, incidence of insect, disease, and physiological damage in high tunnel plots reduced lettuce quality and marketable yield (P > 0.0002). Lettuce head length:diameter ratio (LDR) averaged across cultivars was equal between high tunnel and the open field at all three locations. High tunnel production systems offer greater control of environments suitable for lettuce production, especially in climates like Knoxville and Lubbock where later-planted open-field systems may be more susceptible to temperature swings that may affect lettuce quality. These results suggest that although high tunnel culture alone may influence lettuce yield and quality, regional climates likely play a critical role in determining the impact of these two production systems on marketable lettuce yields.

Full access